Skip to main content
Log in

Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the “S” line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin–workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the “S” line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, G.B. Patent Application No.9125978.8, 1991.

  2. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  3. S. Ji, Z. Li, Z. Zhou and B. Wu: J. Mater. Eng. Perform., 2017, vol. 26, pp. 5085–96.

    Article  Google Scholar 

  4. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  Google Scholar 

  5. D. Zhemchuzhnikova, S. Mironov and R. Kaibyshev: Metall. Mater. Trans. A, 2016, vol. 48A, pp. 150–58.

    Google Scholar 

  6. X.C. Liu and C.S. Wu: Mater. Des., 2016, vol. 90, pp. 350–58.

    Article  Google Scholar 

  7. Y. Tao, Z. Zhang, D.R. Ni, D. Wang, B.L. Xiao and Z.Y. Ma: Mater. Sci. Eng. A, 2014, vol. 612, pp. 236–45.

    Article  Google Scholar 

  8. W.J. Arbegast: Scr. Mater., 2008, vol. 58, pp. 372–76.

    Article  Google Scholar 

  9. Z. Zhu, M. Wang, H. Zhang, X. Zhang, T. Yu and Z. Wu: Metals, 2017, vol. 7, pp. 256–571.

    Article  Google Scholar 

  10. P. Heurtier, M.J. Jonesb, C. Desrayauda, J.H. Driver, F. Montheillet and D. Allehauxc: J. Mater. Process. Technol., 2006, vol. 171, pp. 348–57.

    Article  Google Scholar 

  11. J.A. Schneider and A.C. Nunes: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 777–83.

    Article  Google Scholar 

  12. F. Simoes and D.M. Rodrigues: Mater. Des., 2014, vol. 59, pp. 344–51.

    Article  Google Scholar 

  13. Z. Zhang, B.L. Xiao, D. Wang and Z.Y. Ma: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 1717–26.

    Google Scholar 

  14. J.H. Yan, M.A. Sutton and A.P. Reynolds: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 725–36.

    Article  Google Scholar 

  15. S.W. Xu and X.M. Deng: Acta Mater., 2008, vol. 56, pp. 1326–41.

    Article  Google Scholar 

  16. Y. Pan and D.A. Lados: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1708–26.

    Article  Google Scholar 

  17. K. Colligan: Weld. J., 1999, vol. 78, pp. 229–37.

    Google Scholar 

  18. Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata and M. Tanaka: Scr. Mater., 2011, vol. 65, pp. 1085–88.

    Article  Google Scholar 

  19. X.C. Liu, C.S. Wu and G.K. Padhy: Scr. Mater., 2015, vol. 102, pp. 95–98.

    Article  Google Scholar 

  20. H.N.B. Schmidt, T.L. Dickerson and J.H. Hattel: Acta Mater., 2006, vol. 54, pp. 1199–1209.

    Article  Google Scholar 

  21. P. Pourahmad, M. Abbasi and T. Nonferr: Metal. Soc., 2013, vol. 23, pp. 1253–61.

    Google Scholar 

  22. Y. Shimoda, M. Tsubaki, T. Yasui, M. Fukumoto, T. Fujita and J. Osawa: Steel. Res. Int., 2010, vol. 81, pp. 1108–11.

    Google Scholar 

  23. M. Fukumoto, M. Tsubaki, T. Yasui and K. Miyagawa: Steel. Res. Int., 2010, vol. 81, pp. 1096–99.

    Google Scholar 

  24. Y. S. Sato, F. Yamashita, Y. Sugiura, S. H. C. Park and H. Kokawa: Scr. Mater., 2004, vol. 50, pp. 365–69.

    Article  Google Scholar 

  25. S.S. Di, X.Q. Yang, D.P. Fang and G.H. Luan: Mater. Chem. Phys., 2007, vol. 104, pp. 244–48.

    Article  Google Scholar 

  26. Y.S. Sato, H. Takauchi, S.H.C. Park and H. Kokawa: Mater. Sci. Eng. A, 2005, vol. 405, pp. 333–38.

    Article  Google Scholar 

  27. Z. Zhang, B.L. Xiao and Z.Y. Ma: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4081–97.

    Article  Google Scholar 

  28. Z. Zhang, B.L. Xiao and Z.Y. Ma: Mater. Sci. Eng. A, 2005, vol. 614, pp. 6–15.

    Article  Google Scholar 

  29. K. Ramanjaneyulu, G. M. Reddy and A. V. Rao: Trans. Indian Inst. Met., 2014, vol. 67, pp. 769–80.

    Article  Google Scholar 

  30. A.K. Kadian and P. Biswas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 4119–27.

    Article  Google Scholar 

  31. A.K. Kadian and P. Biswas, J. Manuf. Process., 2017, vol. 26, pp. 382–92.

    Article  Google Scholar 

  32. Z. Zhang and H.W. Zhang: J. Mater. Process. Technol., 2009, vol. 209, pp. 241–70.

    Article  Google Scholar 

  33. Z.W. Chen, T. P. Sang and Y. Qi: Mater. Sci. Eng. A, 2008, vol. 474, pp. 312–16.

    Article  Google Scholar 

  34. D.K. Yaduwanshi, S. Bag and S. Pal: Mater. Des., 2016, vol. 92, pp. 166–83.

    Article  Google Scholar 

  35. Y.C. Lin, J. J. Liu and J. N. Chen: Exp. Mech., 2013, vol. 53, pp. 1573–82.

    Article  Google Scholar 

  36. M. Mehta, K. Chatterjee and A. De: Sci. Technol. Weld. Joining, 2013, vol. 18, pp. 191–97.

    Article  Google Scholar 

  37. Q. Li and M. Lovell: J. Mater. Process. Technol., 2005, vol. 160, pp. 245–56.

    Article  Google Scholar 

  38. Z.Y. Ma, S.R. Sharma and R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 422, pp. 269–78.

    Article  Google Scholar 

  39. X.X. Zhang, B.L. Xiao and Z.Y. Ma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3218–28.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant No. 51331008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Xue or Z. Y. Ma.

Additional information

Manuscript submitted April 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X.H., Xue, P., Wang, D. et al. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy. Metall Mater Trans A 49, 2673–2683 (2018). https://doi.org/10.1007/s11661-018-4615-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4615-2

Navigation