Effect of Annealing Treatment on Σ3-Type CSL Boundaries and Its Interactions in 304HCu Grade Austenitic Stainless Steel

  • Manmath Kumar Dash
  • R. Mythili
  • Arup Dasgupta
  • S. Saroja
Article
  • 21 Downloads

Abstract

This paper presents the results of a study on grain boundary characteristics in cold deformed and annealed 304HCu grade austenitic stainless steel (SS 304HCu) using electron backscatter diffraction. The microstructure exhibited an increasing fraction of Σ1 to 29 coincidence site lattice boundaries with annealing temperature, resulting up to ~60 pct at 1573 K with 92 pct contribution from Σ3-type twin boundary. However, the twin boundary interaction at the triple points with a network of Σ3–Σ3–Σ9 was found to decrease from 4 to 0.5 pct with annealing temperature. To understand the resultant boundary advancement of the Σ3 n (n = 1, 2, 3) boundaries, their migration was traced in the annealed specimen. However, in the specimen with extended annealing Σ3 boundary fraction was found to be higher with a concomitant decrease in the boundary fraction generated by the Σ3 interactions. In this study, a procedure to analyze the coherency of Σ3 boundaries and its interfaces that form due to Σ3 interactions has been evolved based on single-section analysis using the pole concentration across the grains. Further, a crystallographic description of the two planes meeting at the interface of Σ3-type boundary has been provided by adopting serial sectioning methods, which help to understand the morphological changes. The quantitative deviation from exact coherent Σ3 has been estimated to be within ~6 deg in this study.

Notes

Acknowledgments

The authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement during this work.

References

  1. 1.
    K. Mayer, W. Bendick, R. Husemann, T. Kern, and R. Scarlin: PWR, vol. 33, pp. 831–41.Google Scholar
  2. 2.
    D. Thornton and K. Meyer: in Advanced Heat Resistant Steels for Power Generation, R. Viswanathan and J.W. Nutting, eds., 1999, pp. 349–65.Google Scholar
  3. 3.
    R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10(1), pp. 81-95.CrossRefGoogle Scholar
  4. 4.
    P.S. Weitzel: ASME 2011 Power Conference Collocated with JSME ICOPE 2011, American Society of Mechanical Engineers, 2011, pp. 281–91.Google Scholar
  5. 5.
    H.L. Hendrix: Proc. Seventh Int. Conf., October 22–25, 2013, Waikoloa, Hawaii, USA, ASM International, 2014, pp. 60–73.Google Scholar
  6. 6.
    T. Watanabe: J. Mater. Sci., 2011, vol. 46, pp. 4095-4115.CrossRefGoogle Scholar
  7. 7.
    D. Brandon: Acta. Metall. Mater., 1966, vol. 14, pp. 1479-1484.CrossRefGoogle Scholar
  8. 8.
    V. Randle: Scripta Mater., 2001, vol. 44, pp. 2789-2794.CrossRefGoogle Scholar
  9. 9.
    T. Watanabe, H. Fujii, H. Oikawa and K. Arai: Acta. Metall. Mater., 1989, vol. 37, pp. 941-952.CrossRefGoogle Scholar
  10. 10.
    R. Jones and V. Randle: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4275-4280.CrossRefGoogle Scholar
  11. 11.
    L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad and D.A. McClintock: J. Nuc. Mater., 2008, vol. 374, pp. 270-280.CrossRefGoogle Scholar
  12. 12.
    H. Kokawa, M. Shimada, M. Michiuchi, Z. Wang and Y. Sato, Acta. Metall. Mater., 2007, vol. 55, pp. 5401-5407.CrossRefGoogle Scholar
  13. 13.
    S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa and T. Watanabe: J. Mater. Sci., 2008, vol. 43, pp. 3792-3799.CrossRefGoogle Scholar
  14. 14.
    B.W. Reed, M. Kumar, R.W. Minich and R.E. Rudd: Acta. Metall. Mater., 2008, vol. 56, pp. 3278-3289.CrossRefGoogle Scholar
  15. 15.
    C.-S. Kim, Y. Hu, G.S. Rohrer and V. Randle: Scripta Mater., 2005, vol. 52, pp. 633-637.CrossRefGoogle Scholar
  16. 16.
    V. Randle: Acta. Metall. Mater., 2004, vol. 52, pp. 4067-4081.CrossRefGoogle Scholar
  17. 17.
    S. Mandal, A. Bhaduri and V.S. Sarma: J. Mater. Sci., 2011, vol. 46, pp. 275-284.CrossRefGoogle Scholar
  18. 18.
    G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959-962.CrossRefGoogle Scholar
  19. 19.
    W. Wang and H. Guo: Mater. Sci. Eng. A, 2007, vol. 445, pp. 155-162.CrossRefGoogle Scholar
  20. 20.
    S.G. Chowdhury, P. Kumar, A. Das, S.K. Das, B. Mahato and P. De: Phil. Mag. Lett., 2008, vol. 88, pp. 407-414.CrossRefGoogle Scholar
  21. 21.
    M.K. Dash, T. Karthikeyan and S. Saroja, T. Indian I. Metals: 2017, vol. 70, pp. 133-143.CrossRefGoogle Scholar
  22. 22.
    G.S. Rohrer, D.M. Saylor, B.E. Dasher, B.L. Adams, A.D. Rollett and P. Wynblatt: Z. Metallkd., 2004, vol. 95, pp. 197-214.CrossRefGoogle Scholar
  23. 23.
    M. Upmanyu, D. Srolovitz, L. Shvindlerman and G. Gottstein: Acta. Metall. Mater., 1999, vol. 47, pp. 3901-3914.CrossRefGoogle Scholar
  24. 24.
    M. Demirel, A. Kuprat, D. George and A. Rollett: Phys. Rev. Lett., 2003, vol. 90, pp. 016106.CrossRefGoogle Scholar
  25. 25.
    M. Upmanyu, R. Smith and D.J. Srolovitz: Interface Sci., 1998, vol. 6, pp. 41-58.CrossRefGoogle Scholar
  26. 26.
    B. Schönfelder, D. Wolf, S. Phillpot and M. Furtkamp: Interface Sci., 1997, vol. 5, pp. 245-262.CrossRefGoogle Scholar
  27. 27.
    H. Zhang, M. Mendelev and D. Srolovitz: Acta. Metall. Mater., 2004, vol. 52, pp. 2569-2576.CrossRefGoogle Scholar
  28. 28.
    M.K. Dash, T. Karthikeyan, R. Mythili, V. Vijayanand and S. Saroja: Metall. Trans. A, 2017, vol. 48, pp. 4883-4894.CrossRefGoogle Scholar
  29. 29.
    Z. Guo, N. Saunders, J.P. Schillè and A.P. Miodownik: Mater. Sci. Engg. A, 2009, vol. 499, pp. 7-13.CrossRefGoogle Scholar
  30. 30.
    V. Gertsman and S.M. Bruemmer: Acta. Metall. Mater., 2001, vol. 49, pp. 1589-1598.CrossRefGoogle Scholar
  31. 31.
    T. Karthikeyan and S. Saroja: J Appl Crystallogr., 2013, vol. 46, pp. 1221-1224.CrossRefGoogle Scholar
  32. 32.
    Lin F X, Godfray A, Jensen D J and Winther: G Mater Charac., 2010, vol. 61, pp. 1203.CrossRefGoogle Scholar
  33. 33.
    George E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, NY, 1988.Google Scholar
  34. 34.
    D.G. Brandon: Acta. Metall. Mater., 1996, vol. 14, pp. 1479–1484CrossRefGoogle Scholar
  35. 35.
    A. Morawiec: Scripta Mater., 2009, vol. 61, pp. 438-440.CrossRefGoogle Scholar
  36. 36.
    H. Beladi and G.S. Rohrer: Metall. Trans. A, 2013, vol. 44, pp. 115-124.CrossRefGoogle Scholar
  37. 37.
    J. Mackenzie: Acta. Metall. Mater., 1964, vol. 12, pp. 223-225.CrossRefGoogle Scholar
  38. 38.
    T. Karthikeyan, M.K. Dash, S. Saroja and M. Vijayalakshmi: Metall. Trans. A, 2013, vol. 44, pp. 1673-1685.CrossRefGoogle Scholar
  39. 39.
    D. L. Engelberg, F. J. Humphreys and T. J. Marrow: J. Microscopy, 2008, vol. 230, pp. 435–444.CrossRefGoogle Scholar
  40. 40.
    R. Fullman and J. Fisher: J. Appl. Phys., 1951, vol. 22, pp. 1350-1355.CrossRefGoogle Scholar
  41. 41.
    H. Gleiter: Acta. Metall. Mater., 1969, vol. 17, pp. 1421-1428.CrossRefGoogle Scholar
  42. 42.
    M.A. Meyers and L.E. Murr: Acta. Metall. Mater., 1978, vol. 26, pp. 951-962.CrossRefGoogle Scholar
  43. 43.
    V. Randle, The role of the coincidence site lattice in grain boundary engineering, Maney Pub., 1996.Google Scholar
  44. 44.
    J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J. Huang and J. Hirth: Acta. Metall. Mater., 2010, vol. 58, pp. 2262-2270.CrossRefGoogle Scholar
  45. 45.
    E. Nes, N. Ryum and O. Hunderi: Acta. Metall. Mater., 1985, vol. 33, pp. 11.CrossRefGoogle Scholar
  46. 46.
    R.D. Doherty: Prog. Mater. Sci., 1997, vol. 42, pp. 39.CrossRefGoogle Scholar
  47. 47.
    R.D. Doherty, Hughes D.A., F.J. Humphreys, J.J. Jonas, D.J. Juul, M.E. Kassner, W.E. King, T.R. McNelleyH.J. McQueen H.J. and A.D. Rollet, Mater. Sci. Eng. 1997, vol. A238, pp. 219.CrossRefGoogle Scholar
  48. 48.
    V. Randle: Acta. Metall. Mater., 1998, vol. 46, pp. 1459-1480.CrossRefGoogle Scholar
  49. 49.
    D.L. Olmsted, S.M. Foiles, E.A. Holm, Acta. Metall. Mater., 2009, vol. 57, pp. 3694-3703.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Manmath Kumar Dash
    • 1
    • 2
  • R. Mythili
    • 1
    • 2
  • Arup Dasgupta
    • 1
    • 2
  • S. Saroja
    • 1
    • 2
  1. 1.Material Characterization Group, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.IGCAR, HBNIKalpakkamIndia

Personalised recommendations