Skip to main content
Log in

Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of glass transition and crystallization of a novel Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 bulk metallic glass (BMG) with high mixing entropy have been studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The continuous DSC curves show five stages of crystallization at lower heating rates (≤ 20 K/min). The activation energies of glass transition were determined by Moynihan and Kissinger methods, while the activation energies of crystallization were calculated utilizing Kissinger, Ozawa, and Boswell models. The crystalline phases corresponding to each crystallization step have been found out. The kinetic fragility of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG has also been evaluated. Based on the isothermal DSC curves, the Avrami exponent, evaluated from the Johnson–Mehl–Avrami equation, has been analyzed in detail. The current study reveals that the crystallization behavior of Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 BMG exhibits characteristics of both the high entropy BMGs and traditional BMGs with a single principal element, leading to its high glass-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.H. Wang, C. Dong, and C.H. Shek: Mater. Sci. Eng. R, 2004, vol. 44, pp. 45-89.

    Article  Google Scholar 

  2. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067-109.

    Article  Google Scholar 

  3. K.F. Shamlaye, K.J. Laws, and J.F. Loffler: Acta Mater., 2017, vol. 128, pp.188-96.

    Article  Google Scholar 

  4. E. Perim, D. Lee, Y. Liu, C. Toher, P. Gong, Y. Li, W. Neal Simmons, O. Levy, JJ. Vlassak, J. Schroers, and S. Curtarolo: Nat. Commun., 2016, vol. 7, pp. 12315

    Article  Google Scholar 

  5. C. Chattopadhyay, and B.S. Murty: Scripta Mater., 2016, vol. 116, pp. 7-10.

    Article  Google Scholar 

  6. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, C.H. Tsau, and S.Y Chang: Adv. Eng. Mater., 2014, vol. 6, pp. 299-303.

    Article  Google Scholar 

  7. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.

    Article  Google Scholar 

  8. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, pp.103505.

    Article  Google Scholar 

  9. Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh JW (2011) Intermetallics, 19:1546-54.

    Article  Google Scholar 

  10. X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai: J. Non-Cryst. Solids, 2011, vol. 357, pp.3557-60.

    Article  Google Scholar 

  11. H.Y. Ding, and K.F. Yao: J. Non-Cryst. Solids, 2013, vol. 364, 9-12.

    Article  Google Scholar 

  12. S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding, and K.F. Yao: Mater. Des., 2015, vol. 87 pp. 625-31.

    Article  Google Scholar 

  13. T. Qi, Y. Li, A. Takeuchi, G. Xie, H. Miao, and W. Zhang: Intermetallics, 2015, vol. 66, pp. 8-12.

    Article  Google Scholar 

  14. C. Chen, S. Pang, T. Cheng, and T. Zhang: J Non-Cryst. Solids, 2015, vol. 410, pp. 39-42.

    Article  Google Scholar 

  15. Y. Zhang, X. Yang, and P.K. Liaw: JOM, 2012, vol. 64, pp. 830-8.

    Article  Google Scholar 

  16. W.H. Wang: JOM, 2014, vol. 66, pp. 2067-77.

    Article  Google Scholar 

  17. M.H. Tsai, and J.W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107-23.

    Article  Google Scholar 

  18. K.N. Lad, R.T. Savalia, A. Pratap, G.K. Dey, and S. Banerjee: Thermochim. Acta, 2008, vol. 473, pp. 74-80.

    Article  Google Scholar 

  19. J. Cui, J.S. Li, J. Wang, H.C. Kou, J.C. Qiao, S. Gravier, and J.J. Blandin: J. Non-Cryst. Solids, 2014, vol. 404, pp. 7-12.

    Article  Google Scholar 

  20. H.Y. Jung, M. Stoica, S. Yi, D.H. Kim, and J. Eckert: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2415-21.

    Article  Google Scholar 

  21. P. Gong, S. Zhao, X. Wang, and K. Yao: Appl. Phys. A, 2015, vol. 120, pp. 145-153.

    Article  Google Scholar 

  22. A.A. Tsarkov, E.N. Zanaeva, A.Y. Churyumov, S.V. Ketov, and D.V. Louzguine-Luzgin: Mater. Charact., 2016, vol. 111, pp. 75-80.

    Article  Google Scholar 

  23. Z.F. Yao, J.C. Qiao, C. Zhang, J.M. Pelletier, and Y. Yao: J. Non-Cryst. Solids, 2015, vol. 415, pp. 42-50.

    Article  Google Scholar 

  24. P. Gong, K.F. Yao, and H.Y. Ding: Mater. Lett., 2015, vol. 156, pp.146-9.

    Article  Google Scholar 

  25. P. Gong, S. Zhao, H. Ding, K. Yao, and X. Wang: J. Mater. Res., 2015, vol. 30, pp. 2772-82.

    Article  Google Scholar 

  26. M. Lasocka: Mater. Sci., 1976, vol. 23, pp. 173-7.

    Google Scholar 

  27. S.X. Wang, S.G. Quan, and C. Dong: Thermochim. Acta, 2012, vol. 532, pp. 92-5.

    Article  Google Scholar 

  28. C.T. Moynihan: J. Am. Ceram. Soc., 1993, vol. 76, pp.1081-7.

    Article  Google Scholar 

  29. H.E. Kissinger: Anal. Chem. 1957, vol. 29, 1702-6.

    Article  Google Scholar 

  30. T. Ozawa: J. Bull. Chem. Soc. Jpn., 1965, vol. 38, pp.1881-6.

    Article  Google Scholar 

  31. P.G. Boswell: J. Therm. Anal. Calorim., 1980, vol. 18, pp. 353-8.

    Article  Google Scholar 

  32. Y. Li, W. Zhang, C. Dong, J. Qiang, and A. Inoue: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 445-9.

    Article  Google Scholar 

  33. N. Hua, W. Chen, X. Liu, and F. Yue: J. Non-Cryst. Solids, 2014, vol. 388, pp. 10-6.

    Article  Google Scholar 

  34. J. Tan, Y. Zhang, M. Stoica, U. Kuhn, N. Mattern, F.S. Pan, and J. Eckert: Intermetallics, 2011, vol. 19, pp. 567-571.

    Article  Google Scholar 

  35. L. Liu, Z.F. Wu, and J. Zhang: J. Alloys Compd., 2002, vol. 339, pp. 90-5.

    Article  Google Scholar 

  36. C. Peng, Z.H. Chen, X.Y. Zhao, A.L. Zhang, L.K. Zhang, and D. Chen: J. Non-Cryst. Solids, 2014, vol. 405, pp.7-11.

    Article  Google Scholar 

  37. W.K. An, A.H. Cai, J.H. Li, Y. Luo, T.L. Li, X. Xiong, Y. Liu, and Y. Pan: J. Non-Cryst. Solids, 2009, vol. 355, pp.1703-6.

    Article  Google Scholar 

  38. A.H. Cai, W.K. An, Y. Luo, T.L. Li, X.S. Li, X. Xiong, and Y. Liu: J. Alloys Compd., 2010, vol. 490, pp. 642-6.

    Article  Google Scholar 

  39. S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo: Thermochim. Acta, 2014, vol. 587, pp.11-7.

    Article  Google Scholar 

  40. C.A. Angell: Science, 1995, vol. 267, pp. 1924-35.

    Article  Google Scholar 

  41. M. Zhu, J.J. Li, L.J. Yao, Z.Y. Jian, F.E. Chang, and G.C. Yang: Thermochim. Acta, 2013, vol. 565, pp. 132-6.

    Article  Google Scholar 

  42. M.Q. Jiang, and L.H. Dai: Phys. Rev. B, 2007, vol. 76, pp. 054204.

    Article  Google Scholar 

  43. Q. Wang, J.M. Pelletier, L. Xia, H. Xu, and Y.D. Dong: J. Alloys Compd., 2006, vol. 413 pp. 181-7.

    Article  Google Scholar 

  44. D. Wang, H. Tan, and Y. Li: Acta Mater., 2005, vol. 53, pp. 2969-79.

    Article  Google Scholar 

  45. D. Okai, Y. Shimizu, N. Hirano, T. Fukami, T. Yamasaki, and A. Inoue: J. Alloys Compd., 2010, vol. 504, pp. S247-50.

    Article  Google Scholar 

  46. K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kuhn, and J. Eckert, J. Appl. Phys., 2012, vol. 112, pp. 063503.

    Article  Google Scholar 

  47. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  Google Scholar 

  48. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  Google Scholar 

  49. S. Ranganathan, and M. Von Heimendahl: J. Mater. Sci., 1981, vol. 16, pp. 2401-4.

    Article  Google Scholar 

  50. A. Calka, and A.P. Radinski: J. Mater. Res., 1985, vol. 3, pp. 59-63.

    Article  Google Scholar 

  51. S. Wei, B. Ding, T. Lei, and Z. Hu: Mater. Lett., 1998, vol. 37, pp. 263-7.

    Article  Google Scholar 

  52. E.J. Mittemeijer: J. Mater. Sci., 2004, vol. 39, pp. 1621-34.

    Article  Google Scholar 

  53. M. Yang, X.J. Liu, H.H. Ruan, Y. Wu, H. Wang, and Z.P. Lu: J. Appl. Phys., 2016, vol. 119, pp. 245112.

    Article  Google Scholar 

  54. G. Adam, and J.H. Gibbs: J. Chem. Phys., 1965, vol. 43, pp. 139-46.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601063), the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51725504), the Basic Research Project of Shenzhen (Grant No. JCYJ20170307155718660), and the Tribology Science Fund of State Key Laboratory of Tribology (Grant No. SKLTKF17B03). The authors are also grateful to the State Key Laboratory of Materials Processing and Die & Mould Technology and the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyun Wang.

Additional information

Manuscript submitted October 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Wang, S., Li, F. et al. Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy. Metall Mater Trans A 49, 2918–2928 (2018). https://doi.org/10.1007/s11661-018-4612-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4612-5

Navigation