Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 3011–3027 | Cite as

High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

  • Md. Shamsujjoha
  • Sean R. Agnew
  • James M. Fitz-Gerald
  • William R. Moore
  • Tabitha A. Newman


Structure–property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains (~ 100 μm). The cellular structure grows along the 〈100〉 crystallographic directions. However, texture analysis revealed that the main 〈100〉 texture component is inclined by ~15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of ~1 × 1015 m−2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with 〈111〉 aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.



The authors thank the Naval Sea Systems Command and the Office of Naval Research for sponsoring the research discussed in this paper. The work was mentored by Naval Surface Warfare Center, Dahlgren Division, as a project through the Naval Engineering Education Consortium Program.


  1. 1.
    N. Shamsaei, A. Yadollahi, L. Bian, and S. Thompson : Addit. Manuf., 2015, vol. 8, pp. 12-35.CrossRefGoogle Scholar
  2. 2.
    J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Rap. Prototyp. J., 2005, vol. 11, pp. 26-36.CrossRefGoogle Scholar
  3. 3.
    Q. Jia and D. Gu: J. Alloys Compd., 2014, vol. 585, pp. 713–721.CrossRefGoogle Scholar
  4. 4.
    J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown, and J. Sienz: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 869–879.CrossRefGoogle Scholar
  5. 5.
    L. Thijs, K. Kempen, J. Kruth, and J. Van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809-1819.CrossRefGoogle Scholar
  6. 6.
    Harry Bhadeshia and Robert Honeycombe (2017): Steels: Microstructure And Properties. Cambridge, MA : Butterworth-Heinemann, and imprint of ElsevierGoogle Scholar
  7. 7.
    F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, and G. Miranda: Addit. Manuf., 2017, vol. 16, pp. 81-89.CrossRefGoogle Scholar
  8. 8.
    K. Saeidi: Stainless steel fabricated by laser melting: Scaled-down structural hierarchies and microstructural heterogeneities, Stockholm University, Stockholm, Sweden, 2016.Google Scholar
  9. 9.
    R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang: Appl. Surf. Sci., 2010, vol. 256, pp. 4350-4356.CrossRefGoogle Scholar
  10. 10.
    S. Dadbakhsh, L. Hao, and N. Sewell: Rapid Prototyp. J., 2012, vol. 18, no. 3, pp. 241–249.CrossRefGoogle Scholar
  11. 11.
    B. Zhang, L. Dembinski, and C. Coddet: Mater. Sci. Eng. A, 2013, vol. 584, pp. 21–31.CrossRefGoogle Scholar
  12. 12.
    [12] D. Wang, C. Song, Y. Yang, and Y. Bai: Mater. Des., 2016, vol. 100, pp. 291–299.CrossRefGoogle Scholar
  13. 13.
    Y. Zhong, L. Liu, S. Wikman, D. Cui, and Z. Shen: J. Nucl. Mater., 2016, 470, pp. 170-178.CrossRefGoogle Scholar
  14. 14.
    Z. Sun, X. Tan, S. Tor, and W. Yeong: Mater. Des., 2016, vol. 104, pp. 197-204.CrossRefGoogle Scholar
  15. 15.
    J. Suryawanshi, K. Prashanth, and U. Ramamurty: Mater. Sci. Eng. A, 2017, vol. 696, pp. 113-121.CrossRefGoogle Scholar
  16. 16.
    C. Haase, J. Bültmann, J. Hof, S. Ziegler, S. Bremen, C. Hinke, A. Schwedt, U. Prahl, and W. Bleck: Materials, 2017, vol. 10, p. 56.CrossRefGoogle Scholar
  17. 17.
    A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen: Mater. Sci. Eng. A, 2016, vol. 678, pp. 365-376.CrossRefGoogle Scholar
  18. 18.
    W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng: J. Mater. Process. Technol., 2014, vol. 214, pp. 2660–2667.CrossRefGoogle Scholar
  19. 19.
    H. D. Carlton, A. Haboub, G. F. Gallegos, D. Y. Parkinson, and A. A. MacDowell: Mater. Sci. Eng. A, 2016, 651, pp. 406–414.CrossRefGoogle Scholar
  20. 20.
    E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato J. Mater. Process.Tech., 2017, 249, pp. 255-263.CrossRefGoogle Scholar
  21. 21.
    D. Tomus, Y. Tian, P. Rometsch, M. Heilmaier, M. Heilmaier and X. Wu: Mater. Sci. Eng. A, 2016, vol. 667, pp. 42-53.CrossRefGoogle Scholar
  22. 22.
    I. Tolosa, F. Garciandía, F. Zubiri, and F. Zapirain: Int. J.Adv. Manu. Tech., 2010, vol. 51, pp. 639-647.CrossRefGoogle Scholar
  23. 23.
    X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu, and Z. Shen: J. Alloys Compd., 2015, vol. 631, pp. 153–164.CrossRefGoogle Scholar
  24. 24.
    EOS GmbH. EOS Stainless Steel 316L material data sheet. [Online] Accessed 21 August 2017
  25. 25.
    ASTM E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: American Society for Testing and Materials, 2016.Google Scholar
  26. 26.
    ASTM E1019-11: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques. West Conshohocken: American Society for Testing and Materi.Google Scholar
  27. 27.
    D. Black, D. Windover, A. Henins, D. Gil, J. Filliben, and J.P. Cline : Adv. X-ray Anal., 2009, vol. 53, pp. 172-179.Google Scholar
  28. 28.
    T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–3175.CrossRefGoogle Scholar
  29. 29.
    G. Ribárik, J. Gubicza, and T. Ungár: Mater. Sci. Eng. A, 2004, vol. 387, pp. 343-347.CrossRefGoogle Scholar
  30. 30.
    G. Ribárik, T. Ungár and J. Gubicza: J. Appl. Crystallogr., 2001, vol. 34, pp. 669–676.CrossRefGoogle Scholar
  31. 31.
    M. El-Tahawy, Y. Huang, T. Um, H. Choe, J. Lábár, T.G. Langdon and J. Gubicza: J. Mater. Res. Technol., 2017 (in press).Google Scholar
  32. 32.
    M. Mangalick and N. Fiore, Trans Metall. Soc. AIME, 1968, vol. 242, p. 2363.Google Scholar
  33. 33.
    A. Borbély, J. Dragomir-Cernatescu, G. Ribárik and T. Ungár: J. Appl.Crystallogr., 2003, vol. 36, pp. 160-162.CrossRefGoogle Scholar
  34. 34.
    T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, “Mater. Des., 2015, vol. 81, pp. 44-53.CrossRefGoogle Scholar
  35. 35.
    L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan and P.W. Shindo: J. Mater. Res. Technol., 2012, vol. 1, pp. 167–177.CrossRefGoogle Scholar
  36. 36.
    L. Facchini, N. Vicente Jr., I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari: Adv. Eng. Mater., 2010, vol. 12, pp. 184-188.CrossRefGoogle Scholar
  37. 37.
    K. Saeidi, X. Gao, F. Lofaj, L. Kvetková, and Z. J. Shen: Alloys Compd., 2015, vol. 633, pp. 463–469.CrossRefGoogle Scholar
  38. 38.
    M. L. Sistiaga, S. Nardone, C. Hautfenne, and J. Van Humbeeck: Annual International Solid Freeform Fabrication Symposium, 2016, pp. 558–565, Austin.Google Scholar
  39. 39.
    F. Geiger, K. Kunze, and T. Etter: Mater. Sci. Eng. A, 2016, vol. 661, pp. 240-246.CrossRefGoogle Scholar
  40. 40.
    J.R. Taylor: An Introduction to Error Analysis — The Study of Uncertainties in Physical Measurements (Second ed.), University Science Books, Sausalito, California (1997).Google Scholar
  41. 41.
    D. Zhang, W. Niu, X. Cao, and Z. Liu: Mater. Sci. Eng. A, 2015, vol. 644, pp. 32–40.CrossRefGoogle Scholar
  42. 42.
    W.M. Tucho, P. Cuvillier, A. Sjolyst-Kverneland, and V. Hansen: Mater. Sci. Eng. A, 2017, vol. 689, pp. 220–232.CrossRefGoogle Scholar
  43. 43.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–2746.CrossRefGoogle Scholar
  44. 44.
    J.C. Li: J. Appl. Phys., 1962, vol. 33, pp. 2958-2965.CrossRefGoogle Scholar
  45. 45.
    I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–6462.CrossRefGoogle Scholar
  46. 46.
    B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2017 (in press).Google Scholar
  47. 47.
    O. Bouaziz, S. Allain, and C. Scott: Scr. Mater., 2008, vol. 58, pp. 484–487.CrossRefGoogle Scholar
  48. 48.
    I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552–3560.CrossRefGoogle Scholar
  49. 49.
    H. Beladi, I. B. Timokhina, Y. Estrin, J. Kim, B. C. De Cooman, and S. K. Kim: Acta Mater., 2011, vol. 59, pp. 7787–7799.CrossRefGoogle Scholar
  50. 50.
    W. Mullins and R. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444-451.CrossRefGoogle Scholar
  51. 51.
    R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, pp. 49-74.CrossRefGoogle Scholar
  52. 52.
    A. Glezer, and I. Permyakova: Melt-Quenched Nanocrystals. Boca Raton : CRC Press (Taylor & Francis Group imprint), 2013.Google Scholar
  53. 53.
    V. Zolotorevsky, N. Belov, and M. Glazoff: Casting aluminum alloys. First. Amsterdam : Elsevier Science, 2007.Google Scholar
  54. 54.
    D. Tomus, Y. Tian, P. A. Rometsch, M. Heilmaier, and X. Wu: Mater. Sci. Eng. A, 2016, vol. 667, pp. 42–53.CrossRefGoogle Scholar
  55. 55.
    J. Walker, K. Berggreen, A. Jones, and C. Sutcliffe: Adv. Eng. Mater., 2009, vol. 11, pp. 541-546.CrossRefGoogle Scholar
  56. 56.
    S. Murugesan, P. Kuppusami, E. Mohandas, and M. Vijayalakshmi: Mater. Lett., 2012, vol. 67, pp. 173–176.CrossRefGoogle Scholar
  57. 57.
    C. Herrera, R. L. Plaut, and A. F. Padilha: Mater. Sci. Forum, 2007, vol. 550, pp. 423–428.CrossRefGoogle Scholar
  58. 58.
    K. Saeidi, X. Gao, Y. Zhong, and Z. J. Shen: Mater. Sci. Eng. A, 2015, vol. 625, pp. 221–229.CrossRefGoogle Scholar
  59. 59.
    G. Langford and M. Cohen, Metall. Mater. Trans., 1970, vol. 1, pp. 1478-1480.CrossRefGoogle Scholar
  60. 60.
    M. Staker and D. Holt: Acta Metall., 1972, vol. 20, pp. 569-579.CrossRefGoogle Scholar
  61. 61.
    D. Kuhlmann-Wilsdorf: Metall. Trans., 1970, vol. 1, pp. 3173-3179.Google Scholar
  62. 62.
    F. Lavrentev: Mater. Sci. Eng., 1980, vol. 46, pp. 191-208.CrossRefGoogle Scholar
  63. 63.
    X. Feaugas and H. Haddou: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2329-2340.CrossRefGoogle Scholar
  64. 64.
    G. Dini, R. Ueji, A. Najafizadeh, and S. M. Monir-Vaghefi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2759–2763.CrossRefGoogle Scholar
  65. 65.
    B. Hutchinson and N. Ridley: Scr. Mater., 2006, vol. 55, pp. 299-302.CrossRefGoogle Scholar
  66. 66.
    M. Kassner: Acta Mater., 2004, vol. 52, pp. 1-9.CrossRefGoogle Scholar
  67. 67.
    B. Kashyap and K. Tangri: Acta Metall. Mater., 1995, vol. 43, pp. 3971-3981.CrossRefGoogle Scholar
  68. 68.
    J. W. Hutchinson: Proc. R. Soc. London A Math. Phys. Eng. Sci.,1976, vol. 348, pp. 101-127.CrossRefGoogle Scholar
  69. 69.
    C.N. Tome, C.R. Canova, and U.F. Kocks: Acta Mater., 1984, vol. 32, pp. 1637-1653.CrossRefGoogle Scholar
  70. 70.
    Y. F. Shen, X. X. Li, X. Sun, Y. D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–522.CrossRefGoogle Scholar
  71. 71.
    G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-446.CrossRefGoogle Scholar
  72. 72.
    F. Pickering: Physical metallurgy and the design of steels, Applied Science Publishing Ltd, Essex, 1978Google Scholar
  73. 73.
    C. Haase, C. Zehnder, T. Ingendahl, A. Bikar, F. Tang, B. Hallstedt, W. Hu, W. Bleck, and D.A. Molodov, Acta Mater., 2017, vol. 122, pp. 332–343.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Md. Shamsujjoha
    • 1
  • Sean R. Agnew
    • 1
  • James M. Fitz-Gerald
    • 1
  • William R. Moore
    • 2
  • Tabitha A. Newman
    • 2
  1. 1.Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Naval Surface Warfare Center Dahlgren DivisionDahlgrenUSA

Personalised recommendations