Skip to main content
Log in

Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.J. Joost: Automotive Magnesium: Impacts and Opportunities, Magnesium Technology, Wiley and TMS, 2014, pp.3-4.

    Google Scholar 

  2. E.L. Rooy: Metals Handbook, Metals Park, ASM vol.15, 1978, pp.750.

    Google Scholar 

  3. [3] D.G. McCartney: Int. Mater. Rev., 1989, vol.34, pp.247-60.

    Article  CAS  Google Scholar 

  4. B.S. Murty, S. AKori, and M. Charkraborty: Inter. Mater., Rev. 2002, 47, 3–29.

    Article  CAS  Google Scholar 

  5. P.S. Mohanty and J.E. Gruzleski: Acta Metall. Mater., 1995, vol.43, pp.2001-12.

    Article  CAS  Google Scholar 

  6. D.H. Stjohn, M.A. Easton, Q. Ma and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol.44, pp. 2935-49.

    Article  Google Scholar 

  7. B.P. Pearce and H.W. Kerr: Metall. Trans. B, 1981, vol.12, pp.479-86.

    Article  CAS  Google Scholar 

  8. A. Ramirez, Q. Ma, B. Davis, T. Wilks and D.H. StJohn: Script Mater., 2008, vol.59, pp. 19-22.

    Article  CAS  Google Scholar 

  9. Z. Fan, Y. Wang, Z.F. Zhang, M.Xia, H.T. Li, J. Xu, L. Granasy and G.M. Scamans: Int. J. Cast Met. Res., 2009, vol. 22, pp.318-22.

    Article  CAS  Google Scholar 

  10. M.J. Li, T. Tamura and K. Miwa: Acta Mater., 2007, vol.55, pp.4635-43.

    Article  CAS  Google Scholar 

  11. E.F. Emley: Principles of Magnesium Technology, Oxford: Pergamon, 1966, pp.127-55.

    Google Scholar 

  12. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford, 1958, pp. 126–37.

    Google Scholar 

  13. Y.C. Lee, A.K. Dahle and D.H. StJohn: Metal. Mater. Trans. A, 2000, vol.31, pp.2895-906.

    Article  CAS  Google Scholar 

  14. F. Saueerwald: Z. Anorg. Chem., 1947, vol. 255, pp.212-20.

    Article  Google Scholar 

  15. D. Vinotha, K. Raghukandan, U.T.S. Pillai and B.C. Pai: Trans. Indian Institute Metals, 2009, vol.62, pp.521-32.

    Article  CAS  Google Scholar 

  16. Q. Ma and D.H. StJohn: Inter. J. Cast Metals Res., 2009, vol.22, pp.256-59.

    Article  Google Scholar 

  17. P. Cao, Q. Ma, D.H. StJohn and M. T. Frost: Mater. Sci. Tech., 2004, vol.20, pp.585-92.

    Article  CAS  Google Scholar 

  18. Q. Ma, D.H. StJohn and M.T. Frost: Script Mater., 2002, vol.46, pp.649-54.

    Article  CAS  Google Scholar 

  19. Q. Ma, D.H. StJohn and M.T. Frost: Script Mater., 2004, vol.50, pp.1115-9.

    Article  CAS  Google Scholar 

  20. Q. Ma, D.H. StJohn and M.T. Frost: Mater. Sci. Forum, 2003, vol.419-422, pp.593-8.

    Google Scholar 

  21. Q. Ma, L. Zheng, D. Graham, M.T. Frost and D.H. StJohn: J. Light Metal., 2001, vol.1, pp.157-65.

    Article  Google Scholar 

  22. Y. Tamura, N. Kono, T. Motegi and E. Sato: J. Jpn. Inst. Light Metal, 1998, vol.48, pp. 185-9.

    Article  CAS  Google Scholar 

  23. Z. Fan, Y. Wang, M. Xia and S. Arumuganathar: Acta Mater., 2009, vol.57, pp.4891-901.

    Article  CAS  Google Scholar 

  24. H.T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol.60, pp.1528-37.

    Article  CAS  Google Scholar 

  25. Y.B. Zuo, B. Jiang and Z. Fan: Mater. Sci. Forum, 2011, vol.690, pp.137-40.

    Article  CAS  Google Scholar 

  26. H. Men, B. Jiang and Z. Fan: Acta Mater., 2010, vol.58, pp.6526-34.

    Article  CAS  Google Scholar 

  27. Y. Wang, Z. Fan, X. Zhou and G. E. Thompson: Philos. Mag. Lett., 2011, vol.91, pp.516-29.

    Article  CAS  Google Scholar 

  28. T.E. Quested: Mater. Sci. Tech., 2004, vol.20, pp.1357-69.

    Article  CAS  Google Scholar 

  29. M.A. Easton and D.H. Stjohn: Acta Mater., 2001, vol.49, pp.1867-78.

    Article  CAS  Google Scholar 

  30. H. Men and Z. Fan: Acta Mater., 2011, vol.59, pp.2704-12.

    Article  CAS  Google Scholar 

  31. J.H. Perepezko: Metals Handbook, vol. 15, Metals Park: ASM, 1978, p.105.

    Google Scholar 

  32. A.M. Bunn, P. Schumacher, M.A. Kearns, C.B. Boothroyd and A.L. Greer: Mater. Sci. Tech., 1999, vol.15, pp.1115-23.

    Article  CAS  Google Scholar 

  33. M. Chakraborty, G.S. Vinod Kumar and B.S. Murty: Trans. Indian Inst. Met., 2005, vol.58, pp.661-70.

    CAS  Google Scholar 

  34. Q. Ma, L. Zheng, D. Graham, M.T. Frost and D.H. StJohn: J. Light Metal. 2001, vol.1, pp.157-65.

    Article  Google Scholar 

  35. T. Gudmundsson, T.I. Sigfusson, D.G. McCartney, E. Wuilloud and P. Fisher: Light Metals, The Minerals, Metals and Materials Society, Warrendale, PA, 1995, pp.851-854.

    Google Scholar 

  36. I. Maxwell and A. Hellawell: Acta Metall., 1975, vol.23, pp.229-37.

    Article  CAS  Google Scholar 

  37. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol.48, pp.2823-35.

    Article  CAS  Google Scholar 

  38. Z. Fan: Metall. Mater. Trans., 2013, vol.44, pp.1409-18.

    Article  CAS  Google Scholar 

  39. H. Men and Z. Fan: Comp. Mater. Sci., 2014, vol.85, pp.1-7.

    Article  CAS  Google Scholar 

  40. Z. Fan, Y.B. Zuo and B. Jiang: Apparatus & Method for Liquid Metals Treatment, 2013, US patent, Authorized No. US20130228045.

  41. Standard test procedures for aluminum alloy grain refiners (TP-1), The Aluminium Association, Washington, DC, 1990.

  42. V.E. Henrich and P.A. Cox: The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994, p.32.

    Google Scholar 

  43. A.F. Moodie, C.E. Warble: J. Cryst. Growth, 1971, vol.10, pp.26-38.

    Article  CAS  Google Scholar 

  44. P. Saha: An Analysis of the Grain Refinement of Magnesium by Zirconium, PhD thesis, Alabama University, Tuscaloosa, 2010.

  45. A.A. Nayeb-Hashemi, J.B. Clark: ASM Handbook, Alloy Phase Diagrams, 1998, p. 1114.

  46. G. Wan and P.R. Sahm: Acta Metall. Mater., 1990, vol.38, pp.2367-72.

    Article  CAS  Google Scholar 

  47. D. Uffelmann, W. Bender, L. Ratke and B. Feuerbacher: Acta Metall. Mater., 1995, vol.43, pp.173-80.

    CAS  Google Scholar 

  48. L. Ratke and W.K. Thieringer: Acta Metall. Mater., 1985, vol.33, pp.1793-802.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Key University Science Research Project of AnHui Province (KJ2017A054), Priority Funding Scheme for Innovative Projects for Overseas Chinese Students in Anhui Province, EPSRC under Grant Numbers of EP/H026177/1 for the EPSRC Centre – LiME, and EP/I038616/1 for the TARF-LCV programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fan.

Additional information

Manuscript submitted October 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, G.S., Wang, Y. & Fan, Z. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium. Metall Mater Trans A 49, 2182–2192 (2018). https://doi.org/10.1007/s11661-018-4594-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4594-3

Navigation