Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 4, pp 1021–1025 | Cite as

The Effect of Nb Micro-alloying on the Bainitic Phase Transformation Under Strip Casting Conditions

Communication
  • 211 Downloads

Abstract

The effect of Nb concentration on the transformation from austenite to bainitic ferrite has been examined under simulated strip casting conditions. Nb concentration was found to delay the nucleation of bainite, but accelerated its growth. It is suggested that the delay in nucleation increases the driving force for transformation, which results in an increase in the growth rate of the bainite. The bainite/austenite interfaces are proposed to move too quickly to suffer appreciable solute drag.

Notes

Dave Gray is warmly thanked for casting the alloys used in this project.

References

  1. 1.
    M. Ferry: Direct Strip Casting of Metals and Alloys: Processing, Microstructure and Properties, Woodhead Publ, Cambridge, 2006.CrossRefGoogle Scholar
  2. 2.
    K. Mukunthan, L. Strezov, R. Mahapatra, and W. Blejde: The Brimacombe Memorial Symposium Proceedings, 2000, pp. 421–37.Google Scholar
  3. 3.
    K.Y. Xie, L. Yao, C. Zhu, J.M. Cairney, C.R. Killmore, F.J. Barbaro, J.G. Williams, and S.P. Ringer: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2199–2206.CrossRefGoogle Scholar
  4. 4.
    L.-T. Shiang and P.J. Wray: Metall. Trans. A, 1989, vol. 20, pp. 1191–8.CrossRefGoogle Scholar
  5. 5.
    A. Girgensohn, A.R. Büchner, K.-H. Tacke: Ironmak. Steelmak., 2000, vol. 27, pp. 317–23.CrossRefGoogle Scholar
  6. 6.
    V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. O’Malley, and S.G. Jansto: Mater. Sci. Eng. A, 2014, vol. 595, pp. 143–53.CrossRefGoogle Scholar
  7. 7.
    S. Malekjani, I.B. Timokhina, J. Wang, P.D. Hodgson, and N.E. Stanford: Mater. Sci. Eng. A, 2013, vol. 581, pp. 39–47.CrossRefGoogle Scholar
  8. 8.
    T. Dorin, N. Stanford, A. Taylor, and P. Hodgson: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5561–71.CrossRefGoogle Scholar
  9. 9.
    H. Bhadeshia: Bainite in Steels. Institute of Materials, London, 2001, p. 454.Google Scholar
  10. 10.
    H.K.D.H. Bhadeshia and J.W. Christian: Metall. Trans. A, 1990, vol. 21, pp. 767–97.CrossRefGoogle Scholar
  11. 11.
    G. Spanos, H.S. Fang, and H.I. Aaronson: Metall. Mater. Trans. A, 1990, vol. 21, pp. 1381–90.CrossRefGoogle Scholar
  12. 12.
    D. Quidort and Y.J.M. Brechet: Acta Mater., 2001, vol. 49, pp. 4161–70.CrossRefGoogle Scholar
  13. 13.
    G.I. Rees, J. Perdrix, T. Maurickx, and H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194, pp. 179–86.CrossRefGoogle Scholar
  14. 14.
    K. Zhu, C. Oberbillig, C. Musik, D. Loison, and T. Iung: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4222–31.CrossRefGoogle Scholar
  15. 15.
    H. Chen, K. Zhu, L. Zhao, and S. van der Zwaag: Acta Mater., 2013, vol. 61, pp. 5458–68.CrossRefGoogle Scholar
  16. 16.
    H. Chen, A. Borgenstam, J. Odqvist, I. Zuazo, M. Goune, J. Ågren, and S. Van Der Zwaag: Acta Mater., 2013, vol. 61, pp. 4512–23.CrossRefGoogle Scholar
  17. 17.
    T. Jia and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 614–21.CrossRefGoogle Scholar
  18. 18.
    M. Suehiro, Z.-K. Liu, and J. Ågren: Acta Mater., 1996, vol. 44, pp. 4241–51.CrossRefGoogle Scholar
  19. 19.
    Z. Liu, Y. Kobayashi, and K. Nagai: Mater. Trans., 2004, vol. 45, pp. 479–87.CrossRefGoogle Scholar
  20. 20.
    L. Strezov and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959–66.CrossRefGoogle Scholar
  21. 21.
    T. Dorin, K. Wood, A. Taylor, P. Hodgson, and N. Stanford: Acta Mater., 2016, vol. 115, pp. 167–77.CrossRefGoogle Scholar
  22. 22.
    G.-X. Wang and E.F. Matthys: Int. J. Heat Mass Transf., 2002, vol. 45, pp. 4967–81.CrossRefGoogle Scholar
  23. 23.
    T. Evans and L. Strezov: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1081–9.CrossRefGoogle Scholar
  24. 24.
    L. Strezov, J. Herbertson, and G.R. Belton: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1023–30.CrossRefGoogle Scholar
  25. 25.
    A. Hunter and M. Ferry: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1499–507.CrossRefGoogle Scholar
  26. 26.
    A. Hunter and M. Ferry: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3747–54.CrossRefGoogle Scholar
  27. 27.
    D. Bouchard, J.-P. Nadeau, D. Simard, F.G. Hamel, B. Howes, and C. Paumelle: Metall. Mater. Trans. B, 2002, vol. 33, pp. 403–11.CrossRefGoogle Scholar
  28. 28.
    P.J. Felfer, C.R. Killmore, J.G. Williams, K.R. Carpenter, S.P. Ringer, and J.M. Cairney: Acta Mater., 2012, vol. 60, pp. 5049–55.CrossRefGoogle Scholar
  29. 29.
    D. Quidort and Y.J. Brechet: ISIJ Int., 2002, vol. 42, pp. 1010–7.CrossRefGoogle Scholar
  30. 30.
    P. Yan and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2015, vol. 31, pp. 1066–76.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Future Industry InstituteUniversity of South AustraliaMawson LakesAustralia
  2. 2.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations