Metallurgical and Materials Transactions A

, Volume 49, Issue 4, pp 1287–1294 | Cite as

An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

  • L. Laffont
  • R. Jday
  • J. Lacaze


Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron–graphite) and partly in the metastable (iron–cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.



We are pleased to acknowledge D. Poquillon for calculations performed with CASTEM software (Figure 7). FIB preparation was performed by C. Josse at the UMS-Raimond Castaing service in Toulouse who is warmly thanked.


  1. 1.
    B. Lux: AFS Cast Metals Res. J., 1972, vol. 8, pp. 25-39.Google Scholar
  2. 2.
    I Minkoff, B Lux (1975) The Metallurgy of Cast Iron, B Lux, I Minkoff, F Mollard (Eds), Georgi Publishing Company, St. Saphorin, 1975, pp. 473-491.Google Scholar
  3. 3.
    D.D. Double, A. Hellawell: Acta Metal., 1974, vol. 22, pp. 481-487.CrossRefGoogle Scholar
  4. 4.
    M. Hillert, Y. Lindblom: J. Iron Steel Inst., 1954, vol. 148, pp. 388-390.Google Scholar
  5. 5.
    B. Miao, D.O. Northwood, W. Bian, K. Fang, M. H. Fan: J. Mater. Sci., 1994, vol. 29, pp. 225-261.CrossRefGoogle Scholar
  6. 6.
    I. Minkoff: The Physical Metallurgy of Cast Iron, 1st ed., Wiley, Chichester, 1983, pp 102-133.Google Scholar
  7. 7.
    G. Faivre: Adv. Mater. Res., (1997), vol. 4-5, pp. 17-30.CrossRefGoogle Scholar
  8. 8.
    J. Qing, V.L. Richards, D.C. Van Aken: Carbon, 2017, vol. 116, pp. 456-469.CrossRefGoogle Scholar
  9. 9.
    J. Lacaze, K. Theuwissen, L. Laffont, M. Véron: IOP Conf. Series: Materials Science and Engineering, 2016, vol. 117, pp. 012024.CrossRefGoogle Scholar
  10. 10.
    PhD dissertation, Missouri S&T, 2016., accessed November 26, 2016.
  11. 11.
    S. Amini, R. Abbaschian: Carbon, 2013, vol. 51, pp. 110-123.CrossRefGoogle Scholar
  12. 12.
    D.M. Stefanescu, G. Alonso, P. Larranaga, E. De la Fuente, R. Suarez: Acta Mater., 2016, vol. 107, pp. 102-126.CrossRefGoogle Scholar
  13. 13.
    D.D. Double, A. Hellawell: Acta Metal. Mater., 1995, vol. 43, pp. 2435-2442.CrossRefGoogle Scholar
  14. 14.
    K. Theuwissen, M.C. Lafont, L. Laffont, B. Viguier, J. Lacaze: Trans. Indian Inst. Met., 2012, vol. 65, pp. 627–631.CrossRefGoogle Scholar
  15. 15.
    K. Theuwissen, J. Lacaze, M. Veron, L. Laffont: Materials Characterization, 2014, vol.95, pp. 187-191.CrossRefGoogle Scholar
  16. 16.
    K. Theuwissen, J. Lacaze, L. Laffont: Carbon, (2016), vol. 96, pp. 1120-1128.CrossRefGoogle Scholar
  17. 17.
    J.P. Monchoux, C. Verdu, G. Thollet, R. Fougères, A. Reynaud: Acta Mater., 2001, vol. 49 pp. 4355-4362.CrossRefGoogle Scholar
  18. 18.
    D. Li, R. Tan, J. Gao, B. Wei, Z. Fan, Q. Huang, K. He: Carbon, 2017, vol. 111, pp. 428-438.CrossRefGoogle Scholar
  19. 19.
    R. Ghergu, L. Magnusson Åberg, J. Lacaze: Materials Science Forum, 2014, vol. 790-791 pp. 435-440.CrossRefGoogle Scholar
  20. 20.
    J. Lacaze, J. Bourdie, M.J. Castro-Roman: Acta Mater., 2017, vol. 134, pp. 230-235.CrossRefGoogle Scholar
  21. 21.
    J. Fargues, J.C. Margerie: Fonderie, 1979, vol. 390, pp. 205-221.Google Scholar
  22. 22.
    G.S. Jayaraman, R.D. Maier, J.F. Wallace: AFS Trans., 1979, vol. 87, pp. 299.Google Scholar
  23. 23.
    K. He, A. Brown, R. Brydson, D. Edmonds: J. Mater. Sci., 2006, vol.16, pp. 5235-5241.CrossRefGoogle Scholar
  24. 24.
    K. He, H.R. Daniels, A. Brown, R. Brydson, D.V. Edmonds: Acta Mater., 2007, vol. 55 pp. 2919-2927.CrossRefGoogle Scholar
  25. 25.
    S.A. Rounaghi, P. Shayestech, A.R. Kiani-Rashid: Inter Foundry Res, 2010, vol. 62, pp. 2-7.Google Scholar
  26. 26.
    R. Jday, O. Marsan, J. Bourdie, L. Laffont, F. Bruneseaux, J. Lacaze: Trans. Indian Inst. Met., 2015, vol. 68, pp. 1071-1074.CrossRefGoogle Scholar
  27. 27.
    B. Miao, K. Fang, W. Bian, G. Liu, Acta Metal. Mater., 1990, vol. 38, pp. 2167-2174.CrossRefGoogle Scholar
  28. 28.
    T. Hara, T. Kitagawa, K. Kuroki, S. Saikawa, K. Terayama, S. Ikeno, K. Matsuda: Mater. Trans., 2014, vol. 55, pp. 1500-1505.CrossRefGoogle Scholar
  29. 29.
    E Roy (1988) Cast Iron Technology. Butterworth and Co. Ltd., Brisbane.Google Scholar
  30. 30.
    T. Andriollo, J. Hastel, Mechanics of Materials, 2016, vol. 96, pp. 138-150.CrossRefGoogle Scholar
  31. 31.
    Z. Liu, J. Yang, J. Z. Liu, Y. Yang, Q. Zheng: Acta Mechanica Sinica, 2012, vol. 28, pp. 978-982.CrossRefGoogle Scholar
  32. 32.
    DM Stefanescu, G Alonso, P Larrañaga, E Fuente, R Suarez (2012) Int. J. Metalcasting. Scholar
  33. 33.
    E. Morinbou, T. Kenji, I. Susumu, K. Kiyoharu, S. Minoru, W.K. Harold, Phys. Chem. Solids, 1993, vol. 54, pp 1841-1848.CrossRefGoogle Scholar
  34. 34.
    L. Laffont, M. Monthioux, V. Serin, Carbon, 2002, vol. 40, pp. 767-80.CrossRefGoogle Scholar
  35. 35.
    H.R. Daniels, A. Brown, A. Scott, T. Nichells, B. Rand, R. Brydson: Philos. Mag., 2003, vol. 87, pp. 4073-4092.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.CIRIMAT, Université de Toulouse, CNRS / INPT / UPS, ENSIACETToulouseFrance

Personalised recommendations