Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 5, pp 1931–1947 | Cite as

Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

  • C. Xu
  • G. H. Fan
  • T. Nakata
  • X. Liang
  • Y. Q. Chi
  • X. G. Qiao
  • G. J. Cao
  • T. T. Zhang
  • M. Huang
  • K. S. Miao
  • M. Y. Zheng
  • S. Kamado
  • H. L. Xie
Article
  • 361 Downloads

Abstract

An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength–ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with \( \left\langle { 10{\bar{\text{1}}}0} \right\rangle \) parallel to the extrusion direction. The DRXed grains were deformed by the basal 〈a〉 slip and the hot-worked grains were deformed by the prismatic 〈a〉 slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ′ on basal planes and the β′ phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

Notes

Acknowledgments

This work is supported by National Key Research and Development Program of China, 2016YFB0301102, JSPS Grant-in-Aid for Young Scientists (B), 16K18266, National Nature Science Foundation of China, 51571068, JST Advanced Low Carbon Technology Research and Development Program (ALCA), 12102886.

References

  1. 1.
    T.T. Sasaki, F.R. Elsayed, T. Nakata, T. Ohkubo, S. Kamado and K. Hono: Acta Mater., 2015, vol. 99, pp. 176–186.CrossRefGoogle Scholar
  2. 2.
    H. Yu, S.H. Park and B.S. You: Mater. Sci. Eng. A, 2014, vol. 610, pp. 445–449.CrossRefGoogle Scholar
  3. 3.
    T. Honma, N. Kunito and S. Kamado: Scripta Mater., 2009, vol. 61, pp. 644–647.CrossRefGoogle Scholar
  4. 4.
    C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu and S. Kamado: Sci. Rep. 7, 43391, https://doi.org/10.1038/srep43391 (2017).CrossRefGoogle Scholar
  5. 5.
    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang and X.Y. Lv: Mater. Sci. Eng. A, 2012, vol. 547, pp. 93–98.CrossRefGoogle Scholar
  6. 6.
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng and H.Y. Wang: J. Mater. Sci. Tech., 2018, vol. 34, pp. 245–247.CrossRefGoogle Scholar
  7. 7.
    H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang and J.F. Nie: Acta Mater., 2013, vol. 61, pp. 453-466.CrossRefGoogle Scholar
  8. 8.
    T. Honma, T. Ohkubo, K. Hono and S. Kamado: Mater. Sci. Eng. A, 2005, vol. 395, pp. 301–306.CrossRefGoogle Scholar
  9. 9.
    X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding and J.F. Nie: Mater. Sci. Eng. A, 2006, vol. 431, pp. 322–327.CrossRefGoogle Scholar
  10. 10.
    J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3891–3939.CrossRefGoogle Scholar
  11. 11.
    T. Honma, T. Ohkubo, S. Kamado and K. Hono: Acta Mater., 2007, vol. 55, pp. 78–84.CrossRefGoogle Scholar
  12. 12.
    J.F. Nie, X. Gao and S.M. Zhu: Scripta Mater., 2005, vol. 53, pp. 1049–1053.CrossRefGoogle Scholar
  13. 13.
    J.F. Nie, K. Oh-ishi, X. Gao and K. Hono: Acta Mater., 2008, vol. 56, pp. 6061–6076.CrossRefGoogle Scholar
  14. 14.
    X.H. Shao, Z.Q. Yang and X.L. Ma: Acta Mater., 2010, vol. 58, pp. 4760–4771.CrossRefGoogle Scholar
  15. 15.
    M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga and Y. Kawamura: Acta Mater., 2007, vol. 55, pp. 6798–6805.CrossRefGoogle Scholar
  16. 16.
    Y.M. Zhu, A.J. Morton and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936–2947.CrossRefGoogle Scholar
  17. 17.
    Z. Li, J. Zheng and B. Chen: Mater. Charact., 2016, vol. 120, pp. 345–348.CrossRefGoogle Scholar
  18. 18.
    Z. Yang, M.F. Chisholm, G. Duscher, X. Ma and S.J. Pennycook: Acta Mater., 2013, vol. 61, pp. 350–359.CrossRefGoogle Scholar
  19. 19.
    J. Zheng and B. Chen: Mater. Lett., 2016, vol. 176, pp. 223–227.CrossRefGoogle Scholar
  20. 20.
    J. Grobner, A. Kozlov, X.Y. Fang, S. Zhu, J.F. Nie, M.A. Gibson and R. Schmid-Fetzer: Acta Mater., 2015, vol. 90, pp. 400–416.CrossRefGoogle Scholar
  21. 21.
    J. Hirsch and T. Al-Samman: Acta Mater., 2013, vol. 61, pp. 818–843.CrossRefGoogle Scholar
  22. 22.
    Z.B. Chen, C.M. Liu, H.C. Xiao, J.K. Wang, Z.Y. Chen, S.N. Jiang and Z.J. Su: Mater. Sci. Eng. A, 2014, vol. 618, pp. 232–237.CrossRefGoogle Scholar
  23. 23.
    M. Yamasaki, K. Hashimoto, K. Hagihara and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646–3658.CrossRefGoogle Scholar
  24. 24.
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda and Y. Umakoshi: Acta Mater., 2010, vol. 58, pp. 6282–6293.CrossRefGoogle Scholar
  25. 25.
    Y. Jono, M. Yamasaki and Y. Kawamura: Acta Mater., 2015, vol. 82, pp. 198–211.CrossRefGoogle Scholar
  26. 26.
    Y. Jono, M. Yamasaki and Y. Kawamura: Mater. Trans., 2013, vol. 54, pp. 703–712.CrossRefGoogle Scholar
  27. 27.
    K. Oh-ishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo and K. Hono: Acta Mater., 2009, vol. 57, pp. 5593–5604.CrossRefGoogle Scholar
  28. 28.
    T. Honma, C.L. Mendis, K. Hono and S. Kamado: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2356–2362.CrossRefGoogle Scholar
  29. 29.
    H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, Q. Liu: Acta Mater. 2017, vol. 128, pp. 313–326.CrossRefGoogle Scholar
  30. 30.
    J.H. He, L. Jin, F.H. Wang, S. Dong, J. Dong: J. Magnes. Alloys (2017)  https://doi.org/10.1016/j.jma.2017.09.004.Google Scholar
  31. 31.
    A. Guery, F. Hild, F. Latourte and S. Roux: Int. J. Plasticity, 2016, vol. 81, pp. 249–266.CrossRefGoogle Scholar
  32. 32.
    E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos, M. Bornet and D. Caldemaison: Int. J. Plasticity, 2007, vol. 23, pp. 1512–1539.CrossRefGoogle Scholar
  33. 33.
    H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui and H.L. Xie: Int. J. Plasticity, 2017, vol. 89, pp. 96–109.CrossRefGoogle Scholar
  34. 34.
    M. Huang, G.H. Fan, L. Geng, G.J. Cao, Y. Du, H. Wu, T.T. Zhang, H.J. Kang, T.M. Wang, G.H. Du and H.L. Xie: Sci. Rep. 6, 38461,  https://doi.org/10.1038/srep38461 (2017).CrossRefGoogle Scholar
  35. 35.
    J. Sun, L. Jin, J. Dong, W.J. Ding, A.A. Luo: Mater. Charat. 2016, vol. 119, pp. 195–199.CrossRefGoogle Scholar
  36. 36.
    T.B. Britton and A.J. Wilkinson: Ultramicroscopy, 2011, vol. 111, pp. 1395–1404.CrossRefGoogle Scholar
  37. 37.
    P.D. Littlewood, T.B. Britton and A.J. Wilkinson: Acta Mater., 2011, vol. 59, pp. 6489–6500.CrossRefGoogle Scholar
  38. 38.
    J. Ast, G. Mohanty, Y. Guo, J. Michler and X. Maeder: Mater. Des., 2017, vol. 117, pp. 265–266.CrossRefGoogle Scholar
  39. 39.
    C. Xu, M.Y. Zheng, Y.Q. Chi, X.J. Chen, K. Wu, E.D. Wang, G.H. Fan, P. Yang, G.J. Wang, X.Y. Lv, S.W. Xu and S. Kamado: Mater. Sci. Eng. A, 2012, vol. 549, pp. 128–135.CrossRefGoogle Scholar
  40. 40.
    C. Xu, T. Nakata, X.G. Qiao, M.Y. Zheng, K. Wu and S. Kamado: Sci. Rep. 7, 40846, https://doi.org/10.1038/srep40846 (2017).CrossRefGoogle Scholar
  41. 41.
    J.F. Nie and B.C. Muddle: Acta Mater., 2000, vol. 48, pp. 1691–1703.CrossRefGoogle Scholar
  42. 42.
    J.D. Robson: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3205–3212.CrossRefGoogle Scholar
  43. 43.
    M. Bugnet, A. Kula, M. Niewczas and G.A. Botton: Acta Mater., 2014, vol. 79, pp. 66–73.CrossRefGoogle Scholar
  44. 44.
    J.A. Eades: Appl. Surf. Sci., 1986, vol. 26, pp. 280–293.CrossRefGoogle Scholar
  45. 45.
    S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie and W.J. Ding: J. Alloys Compd., 2007, vol. 427, pp. 316–323.CrossRefGoogle Scholar
  46. 46.
    [46]X.B. Liu, R.S. Chen and E.H. Han: J. Alloys Compd., 2008, vol. 465, pp. 232–238.CrossRefGoogle Scholar
  47. 47.
    X. Hou, Q. Peng, Z. Cao, S. Xu, S. Kamado, L. Wang, Y. Wu and L. Wang: Mater. Sci. Eng. A, 2009, vol. 520, pp. 162–167.CrossRefGoogle Scholar
  48. 48.
    K. Liu, L.L. Rokhlin, F.M. Elkin, D.X. Tang and J. Meng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 828–834.CrossRefGoogle Scholar
  49. 49.
    K. Liu, J. Zhang, G. Su, D. Tang, L.L. Rokhlin, F.M. Elkin and J. Meng: J. Alloys Compd., 2009, vol. 481, pp. 811–818.CrossRefGoogle Scholar
  50. 50.
    Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng and M.X. Liang: Mater. Sci. Eng. A, vol. 454–455, pp. 274–280. (2007)CrossRefGoogle Scholar
  51. 51.
    L. Zheng, C.M. Liu, Y.C. Wan, P.W. Yang and X. Shu: J. Alloys Compd., 2011, vol. 509, pp. 8832–8839.CrossRefGoogle Scholar
  52. 52.
    Q.M. Peng, H.W. Dong, Y.J. Tian and H.J. Zhang: Mater. Sci. Eng. A, vol. 532, pp. 443–448. (2012)CrossRefGoogle Scholar
  53. 53.
    G.Y. Yuan, Y. Liu, C. Lu and W.J. Ding: Mater. Sci. Eng. A, 2008, vol. 472, pp. 75–82.CrossRefGoogle Scholar
  54. 54.
    Y. Liu, G.Y. Yuan, W.J. Ding and C. Lu: J. Alloys Compd., 2007, vol. 427, pp. 160–165.CrossRefGoogle Scholar
  55. 55.
    K. Liu, J.H. Zhang, L.L. Rokhlin, F.M. Elkin, D.X. Tang and J. Meng: Mater. Sci. Eng. A, 2009, vol. 505, pp. 13–19.CrossRefGoogle Scholar
  56. 56.
    M. Yamasaki, T. Anan, S. Yoshimoto and Y. Kawamura: Scripta Mater., 2005, vol. 53, pp. 799–803.CrossRefGoogle Scholar
  57. 57.
    D.K. Xu, L. Liu, Y.B. Xu and E.H. Han: J. Alloys Compd., 2006, vol. 426, pp. 155–161.CrossRefGoogle Scholar
  58. 58.
    M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida and Y. Kawamura: Mater. Trans., 2010, vol. 51, pp. 1640–1647.CrossRefGoogle Scholar
  59. 59.
    Y. Kawamura and M. Yamasaki: Mater. Trans., 2007, vol. 48, pp. 2986–2992.CrossRefGoogle Scholar
  60. 60.
    I.J. Polmear, Light Alloys, fourth ed., Butterworth-Heinemann, Oxford, 2006.Google Scholar
  61. 61.
    T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi: Scripta Mater., 2001, vol. 45, pp. 89–94.CrossRefGoogle Scholar
  62. 62.
    S. Eros and C.S. Smith: Acta Metall., 1961, vol. 9, pp. 14–22.CrossRefGoogle Scholar
  63. 63.
    K. Hagihara, N. Yokotani and Y. Umakoshi: Intermetallics, 2010, vol. 18, pp. 267–276.CrossRefGoogle Scholar
  64. 64.
    E. Onorbe, G. Garces, P. Perez, S. Cabezas, M. Klaus, C. Genzel, E. Frutos and P. Adeva: Scripta Mater., 2011, vol. 65, pp. 719–722.CrossRefGoogle Scholar
  65. 65.
    M. Tane, Y. Nagai, H. Kimizuka, K. Haginara and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 6338–6351.CrossRefGoogle Scholar
  66. 66.
    J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–1015.CrossRefGoogle Scholar
  67. 67.
    F. Wang, J. J. Bhattacharyya and S.R. Agnew: Mater. Sci. Eng. A, 2016, vol. 666, pp. 114–122.CrossRefGoogle Scholar
  68. 68.
    W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63, pp. 737–740.CrossRefGoogle Scholar
  69. 69.
    Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto and H. Tsubakino: Scripta Mater., 2004, vol. 51, pp. 711–714.CrossRefGoogle Scholar
  70. 70.
    Y. Tang, E.M. Bringa and M.A. Meyers: Acta Mater., 2012, vol. 60, pp. 4856–4865.CrossRefGoogle Scholar
  71. 71.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi: Acta Mater., 2003, vol. 51, pp. 2055–2065.CrossRefGoogle Scholar
  72. 72.
    G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun and E. Ma: Nature Mater., 2013, vol. 12, pp. 344–350.CrossRefGoogle Scholar
  73. 73.
    S. Sandlobes, Z. Pei, M. Friak, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe and J. Neugebauer: Acta Mater., 2014, vol. 70, pp. 92–104.CrossRefGoogle Scholar
  74. 74.
    S. Sandlobes, S. Zaefferer, I. Schestakow, S. Yi and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, pp. 429–439.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • C. Xu
    • 1
    • 2
  • G. H. Fan
    • 1
  • T. Nakata
    • 2
  • X. Liang
    • 3
  • Y. Q. Chi
    • 1
  • X. G. Qiao
    • 1
  • G. J. Cao
    • 1
  • T. T. Zhang
    • 1
  • M. Huang
    • 1
  • K. S. Miao
    • 1
  • M. Y. Zheng
    • 1
  • S. Kamado
    • 2
  • H. L. Xie
    • 4
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Research Center for Advanced Magnesium TechnologyNagaoka University of TechnologyNagaokaJapan
  3. 3.Institute of MaterialsShanghai UniversityShanghaiP.R. China
  4. 4.Shanghai Synchrotron Radiation FacilityShanghaiP.R. China

Personalised recommendations