Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 4, pp 1397–1409 | Cite as

Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys

  • Dianyin Hu
  • Ye Gao
  • Fanchao Meng
  • Jun Song
  • Rongqiao Wang
Article

Abstract

Combining experiments and finite element analysis (FEA), a systematic study was performed to analyze the microstructural evolution and stress states of shot-peened GH4169 superalloy over a variety of peening intensities and coverages. A dislocation density evolution model was integrated into the representative volume FEA model to quantitatively predict microstructural evolution in the surface layers and compared with experimental results. It was found that surface roughness and through-depth residual stress profile are more sensitive to shot-peening intensity compared to coverage due to the high kinetic energy involved. Moreover, a surface nanocrystallization layer was discovered in the top surface region of GH4169 for all shot-peening conditions. However, the grain refinement was more intensified under high shot-peening coverage, under which enough time was permitted for grain refinement. The grain size gradient predicted by the numerical framework showed good agreement with experimental observations.

Notes

Acknowledgments

D. Hu greatly thanks the financial support from National Natural Science Foundation of China (NSFC) (Grant Nos. 51305012 and 51675024). R. Wang acknowledges financial support from NSFC (Grant No. 51375031). J. Song acknowledges financial support from NSFC (Grant No. 51628101), McGill Engineering Doctoral Award and National Sciences and Engineering Research Council (NSERC) Discovery grant (Grant No. RGPIN 418469-2012).

References

  1. 1.
    Z. Zhou, A.S. Gill, D. Qian, S.R. Mannava, K. Langer, Y. Wen, V.K. Vasudevan: Int. J. Impact Eng., 2011, vol. 38 (7), pp. 590–96.CrossRefGoogle Scholar
  2. 2.
    Y. Huang, T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 130–33.CrossRefGoogle Scholar
  3. 3.
    C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, C.C. Tai: Mater. Sci. Eng. A, 2009, vol. 510, pp. 289–94.CrossRefGoogle Scholar
  4. 4.
    G. Chen, Y. Zhang, D. Xu, Y.C. Lin, X. Chen: Mater. Sci. Eng. A, 2016, vol. 655, pp. 175–82.CrossRefGoogle Scholar
  5. 5.
    D. Cai, W. Zhang, P. Nie, W. Liu, and M. Yao: Mater. Charact., 2007, vol. 58 (3), pp. 220–25.CrossRefGoogle Scholar
  6. 6.
    J. Du, X. Lü, and Q. Deng: Rare Metal Mat. Eng., 2014, vol. 43 (8), pp. 1830–34.CrossRefGoogle Scholar
  7. 7.
    S. Azadian, L. Wei, and R. Warren: Mater. Charact., 2004, vol. 53 (1), pp. 7–16.CrossRefGoogle Scholar
  8. 8.
    H.Y. Li, Y.H. Kong, G.S. Chen, L.X. Xie, S.G. Zhu, and X. Sheng: Mater. Sci. Eng. A, 2013, vol. 582, pp. 368–73.CrossRefGoogle Scholar
  9. 9.
    A.L. Ortiz, J.W. Tian, J.C. Villegas, L.L. Shaw, and P.K. Liaw: Acta Mater., 2008, vol. 56 (3), pp. 413–26.CrossRefGoogle Scholar
  10. 10.
    O. Unal and R. Varol: Appl. Surf. Sci., 2015, vol. 351, pp. 289–95.CrossRefGoogle Scholar
  11. 11.
    T. Chen, H. John, J. Xu, Q. Lu, J. Hawk, and X. Liu: Corros. Sci., 2013, vol. 77, pp. 230–45.CrossRefGoogle Scholar
  12. 12.
    F. Yin, S. Hu, L. Hua, X. Wang, S. Suslov, and Q. Han: Metall. Mater. Trans. A, 2015, vol. 46A (3), pp. 1253–61.CrossRefGoogle Scholar
  13. 13.
    U. Trdan, M. Skarba, and J. Grum: Mater. Charact., 2014, vol. 97, pp. 57–68.CrossRefGoogle Scholar
  14. 14.
    J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, and J.W. Zhong: Acta Mater., 2010, vol. 58 (11), pp. 3984–94.CrossRefGoogle Scholar
  15. 15.
    X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu: Acta Mater., 2002, vol. 50 (8), pp. 2075–84.CrossRefGoogle Scholar
  16. 16.
    A. Sandá, V. García Navas, and O. Gonzalo: Mater. Des., 2011, vol. 32 (4), pp. 2213–20.CrossRefGoogle Scholar
  17. 17.
    V. Singh and M. Marya: J. Mater. Eng. Perform., 2016, vol. 25 (1), pp. 338–47.CrossRefGoogle Scholar
  18. 18.
    S. Kumar, G. Sudhakar Rao, K. Chattopadhyay, G.S. Mahobia, N.C. Santhi Srinivas, and V. Singh: Mater. Des., 2014, vol. 62, pp. 76–82.CrossRefGoogle Scholar
  19. 19.
    K. Dai and L. Shaw: Mater. Sci. Eng. A, 2007, vol. 463 (1–2), pp. 46–53.CrossRefGoogle Scholar
  20. 20.
    Z. Zhou, A.S. Gill, A. Telang, S.R. Mannava, K. Langer, V.K. Vasudevan, D. Qian: Exp. Mech., 2014, vol. 54 (9), pp. 1597–11.CrossRefGoogle Scholar
  21. 21.
    K. Dalaei, B. Karlsson, and L.E. Svensson: Mater. Sci. Eng. A, 2011, vol. 528 (3), pp. 1008–15.CrossRefGoogle Scholar
  22. 22.
    A. Evans, S. Kim, J. Shackleton, G. Bruno, M. Preuss, and P.J. Withers: Int. J. Fatigue, 2005, vols. 27 (10–12), pp. 1530–34.CrossRefGoogle Scholar
  23. 23.
    J. Hoffmeister, V. Schulze, R. Hessert, and G. Koenig: Int. J. Mater. Res., 2013, vol. 103 (1), pp. 66–72.CrossRefGoogle Scholar
  24. 24.
    H. Nakamura, M. Takanashi, I. Yu, H. Kuroki, and Y. Ueda: Shot Peening Effect on Low Cycle Fatigue Properties of Ti-6Al-4V and Inconel 718, ASME 2011 Turbo Expo: Turbine Tech. Conf. Expos., Vancouver, British Columbia, Canada, 2011.Google Scholar
  25. 25.
    W. Liu, G. Wu, C. Zhai, W. Ding, and A.M. Korsunsky: Int. J. Plasticity, 2013, vol. 49, pp. 16–35.CrossRefGoogle Scholar
  26. 26.
    Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61 (3), pp. 782–817.CrossRefGoogle Scholar
  27. 27.
    Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet: Acta Mater., 1998, vol. 46 (15), pp. 5509–5522.CrossRefGoogle Scholar
  28. 28.
    B. Han, D.Y. Ju, and X.G. Yu: Mater. Des., 2010, vol. 31 (7), pp. 3317–23.CrossRefGoogle Scholar
  29. 29.
    L.F. Zeipper, M.J. Zehetbauer, and C. Holzleithner: Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 217–21.CrossRefGoogle Scholar
  30. 30.
    N. Miyazaki, H. Kutsukake, and A. Kumamoto: J. Cryst. Growth, 2002, vol. 243 (1), pp. 47–54.CrossRefGoogle Scholar
  31. 31.
    P. Haasen: Zeitschrift für Physik, 1962, vol. 167 (4), pp. 461–67.CrossRefGoogle Scholar
  32. 32.
    V. Lemiale, Y. Estrin, H.S. Kim, and R. O Donnell: Comp. Mater. Sci., 2010, vol. 48 (1), pp. 124–32.CrossRefGoogle Scholar
  33. 33.
    D.J. Lee, E.Y. Yoon, D. Ahn, B.H. Park, H.W. Park, L.J. Park, Y. Estrin, and H.S. Kim: Acta Mater., 2014, vol. 76, pp. 281–93.CrossRefGoogle Scholar
  34. 34.
    H. Ding, N. Shen, and Y.C. Shin: Comp. Mater. Sci., 2011, vol. 50 (10), pp. 3016–25.CrossRefGoogle Scholar
  35. 35.
    J. Kavosi, M. Saei, and M. Kazeminezhad: Comp. Mater. Sci., 2013, vol. 67, pp. 359–63.CrossRefGoogle Scholar
  36. 36.
    B. Bhuvaraghan, and S.M. Srinivasan, B. Maffeo: Int. J. Mech. Sci., 2011, vol. 53 (6), pp. 417–24.CrossRefGoogle Scholar
  37. 37.
    W. Cao, R. Fathallah, L. Castex: Mater. Sci. Tech.-Lond., 1995, 9 (11), 967.CrossRefGoogle Scholar
  38. 38.
    D. Hu, Y. Gao, F. Meng, J. Song, Y. Wang, M. Ren, and R. Wang: Chinese J. Aeronaut., 2017, vol. 30 (4), pp. 1592–602.CrossRefGoogle Scholar
  39. 39.
    S.M. Hassani-Gangaraj, K.S. Cho, H.J.L. Voigt, M. Guagliano, and C.A. Schuh: Acta Mater., 2015, vol. 97, pp. 105–15.CrossRefGoogle Scholar
  40. 40.
    S.M. Hassani-Gangaraj, A. Moridi, and M. Guagliano: From conventional to severe shot peening to generate nanostructured surface layer: a numerical study, 6th Int. Conf. Nanomater. Severe Plastic Deform., Metz, France, 2014.Google Scholar
  41. 41.
    J. Xu, Z. Huang, and L. Jiang: Mater. Sci. Eng. A, 2017, vol. 690, pp. 137–45.CrossRefGoogle Scholar
  42. 42.
    Hibbitt, Karlsson & Sorensen, Inc., ABAQUS/Standard User’s manual, vol. II, version 6.4.1, ABAQUS 6.13-1, 2013.Google Scholar
  43. 43.
    M. Frija, T. Hassine, R. Fathallah, C. Bouraoui, and A. Dogui: Mater. Sci. Eng. A, 2006, vols. 426 (1-2), pp. 173–80.CrossRefGoogle Scholar
  44. 44.
    L. Xie, J. Zhang, C. Xiong, L. Wu, C. Jiang, and W. Lu: Mater. Des., 2012, vol. 41, pp. 314–18.CrossRefGoogle Scholar
  45. 45.
    G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21 (1), pp. 31–48.CrossRefGoogle Scholar
  46. 46.
    P.J. Arrazola, A. Kortabarria, A. Madariaga, J.A. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Özel, Simul. Model. Pract. Theory, 2014, vol. 41, pp. 87–103.CrossRefGoogle Scholar
  47. 47.
    S.M.H. Gangaraj, M. Guagliano, and G.H. Farrahi: Surf. Coat. Technol., 2014, vol. 243 (0), pp. 39–45.CrossRefGoogle Scholar
  48. 48.
    R. Lapovok, F.H. Dalla Torre, J. Sandlin, C.H.J. Davies, E.V. Pereloma, P.F. Thomson, and Y. Estrin: J. Mech. Phys. Solids, 2005, vol. 53 (4), pp. 729–47.CrossRefGoogle Scholar
  49. 49.
    P.W.J. Mckenzie, R. Lapovok, and Y. Estrin: Acta Mater., 2007, vol. 55 (9), pp. 2985–93.CrossRefGoogle Scholar
  50. 50.
    S.C. Baik, Y. Estrin, H.S. Kim, and R.J. Hellmig: Mater. Sci. Eng. A, 2003, vols. 351 (1–2), pp. 86–97.CrossRefGoogle Scholar
  51. 51.
    S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, and M. Guagliano: Int. J. Fatigue, 2014, vol. 65 (0), pp. 64–70.CrossRefGoogle Scholar
  52. 52.
    D.J. Child, G.D. West, and R.C. Thomson: Acta Mater., 2011, vol. 59 (12), pp. 4825–4834.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringBeihang UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Advanced Aero-EngineBeijingChina
  3. 3.Beijing Key Laboratory of Aero-Engine Structure and StrengthBeijingChina
  4. 4.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations