Metallurgical and Materials Transactions A

, Volume 49, Issue 5, pp 1692–1707 | Cite as

Two-Phase Eutectic Growth in Al-Cu and Al-Cu-Ag

  • Oriane Senninger
  • Matthew Peters
  • Peter W. Voorhees


The microstructure developed by two-phase lamellar eutectics \((\alpha )\)\((\theta {\text {-Al}}_{2}{\text {Cu}})\) in Al-Cu and Al-Cu-Ag alloys is analyzed. A model of two-phase eutectic growth in multicomponent alloys is used to determine the scaling law of the eutectic microstructure using the alloy thermophysical properties. The application of the model to these alloys shows that the addition of Ag to Al-Cu alloys does not significantly change the length scale of the microstructure, which is in agreement with previous experimental studies. This is explained by the combined phenomena of the decrease in interface energies with the addition of Ag and the superheating of the \((\alpha )\) phase interface induced by the Ag composition profile.



This work has been supported by the Dow Corning Corporation and by the Center for Hierarchical Materials Design Contract 0NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology. We would like to thank Charles-André Gandin and Gildas Guillemot for fruitful discussions.


  1. 1.
    S. Rex, B. Böttger, V. Witusiewicz, and U. Hecht: Mater. Sci. Eng. A, 2005, vol. 413, pp. 249–254.CrossRefGoogle Scholar
  2. 2.
    J. De Wilde and L. Froyen: Microgravity Sci. Technol., 2005, vol. 16, pp. 40–44.CrossRefGoogle Scholar
  3. 3.
    K.B. Kim, J. Liu, N. Marasli, and J.D. Hunt: Acta metall. mater., 1995, vol. 43, pp. 2143–2147.CrossRefGoogle Scholar
  4. 4.
    R.M. Jordan and J.D. Hunt: Metall. Mater. Trans. B, 1971, vol. 2B, pp. 3401–3410.CrossRefGoogle Scholar
  5. 5.
    M. Tassa and J.D. Hunt: J. Cryst. Growth, 1976, vol. 34, pp. 38–48.CrossRefGoogle Scholar
  6. 6.
    J.N. Clark and R. Elliott: Metall. Trans. A, 1976, vol. 7A, pp. 1197–1202.CrossRefGoogle Scholar
  7. 7.
    J.-H. Lee, S. Liu, and R. Trivedi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3111–3125.CrossRefGoogle Scholar
  8. 8.
    J. De Wilde, L. Froyen, and S. Rex: Scripta mater., 2004, vol. 51, pp. 533–538.CrossRefGoogle Scholar
  9. 9.
    K.A. Jackson and J.D. Hunt: AIME Metall. Soc. Trans., 1966, vol. 236, pp. 1129–1142.Google Scholar
  10. 10.
    P. Magnin and R. Trivedi: Acta metall. mater., 1991, vol. 39, pp. 453–467.CrossRefGoogle Scholar
  11. 11.
    D.G. McCartney, J.D. Hunt, and R.M. Jordan: Metall. Trans. A, 1980, vol. 11A, pp. 1243–1249.CrossRefGoogle Scholar
  12. 12.
    O. Senninger and P.W. Voorhees: Acta Mater., 2016, vol. 116, pp. 308–320.CrossRefGoogle Scholar
  13. 13.
    A. Lahiri and A. Choudhury: Acta Mater., 2017, vol. 133, pp. 316–332.CrossRefGoogle Scholar
  14. 14.
    J. De Wilde, L. Froyen, V.T. Witusiewicz, and U. Hecht: J. Appl. Phys., 2005, vol. 97, p. 113515.CrossRefGoogle Scholar
  15. 15.
    A. Karma and A. Sarkissian: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 635–656.CrossRefGoogle Scholar
  16. 16.
    M. Plapp and A. Karma: Phys. Rev. E, 1999, vol. 60, p. 6865.CrossRefGoogle Scholar
  17. 17.
    V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd, 2004, vol. 385, pp. 133–143.Google Scholar
  18. 18.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.CrossRefGoogle Scholar
  19. 19.
    J.-H. Lee, S. Liu, H. Miyahara, and R. Trivedi: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 909–917.CrossRefGoogle Scholar
  20. 20.
    L.K. Aagesen, J.L. Fife, E.M. Lauridsen, and P.W. Voorhees: Scripta Mater., 2011, vol. 64, pp. 394–397.CrossRefGoogle Scholar
  21. 21.
    M. Gündüz and J.D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651–1672.CrossRefGoogle Scholar
  22. 22.
    A. Bulla and C. Carreno-Bodensiek: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1956–1964.CrossRefGoogle Scholar
  23. 23.
    V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd, 2005, vol. 387, pp. 217–227.CrossRefGoogle Scholar
  24. 24.
    K. Keşlioğlu, Y. Ocak, S. Aksöz, N. Maraşlı, E. Çadırlı, and H. Kaya: Met. Mater. Int., 2010, vol. 16, pp. 51–59.CrossRefGoogle Scholar
  25. 25.
    I. Ansara, M.H. Rand, and A.T. Dinsdale: COST 537 Thermochemical Database for Light Metal Alloys, European Communities, Belgium, 1998, vol. 2.Google Scholar
  26. 26.
    H.M. Tensi and C. Mackrodt: Zeit. Fur Metall., 1990, vol. 81, pp. 367–372.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Oriane Senninger
    • 1
  • Matthew Peters
    • 1
  • Peter W. Voorhees
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations