Metallurgical and Materials Transactions A

, Volume 50, Issue 5, pp 2289–2301 | Cite as

High-Temperature Static Coarsening of Gamma-Prime Precipitates in NiAlCr-X Single Crystals

  • S. L. SemiatinEmail author
  • N. C. Levkulich
  • A. R. C. Gerlt
  • E. J. Payton
  • J. S. Tiley
  • F. Zhang
  • R. A. MacKay
  • R. V. Miner
  • T. P. Gabb


The high-temperature coarsening behavior of γ′ precipitates in a series of NiAlCr, NiAlCrTi, NiAlCrW, and NiAlCrTa single-crystal alloys was determined at temperatures between 1158 K and 1473 K (885 °C and 1200 °C). For this purpose, samples were supersolvus solution treated, water quenched, and then subsolvus aged for times between 0.067 and 96 hours. All of the measurements revealed an r3 dependence of the average precipitate radius on time, thus suggesting bulk-diffusion control of the coarsening process. Coarsening kinetics were fastest for NiCrAl and slowest for NiCrAlTa. The observations were interpreted in terms of the classical Lifshitz–Slyosov–Wagner (LSW) theory modified to account for the finite volume fraction of particles, the composition of the precipitates, and the multicomponent nature of the alloys. By this means, an effective diffusivity for the coarsening process was determined and found to lie between 0.6 and 1.5 times that for the impurity diffusivity of chromium in nickel. Furthermore, the modified LSW theory in conjunction with experimental measurements suggested that the effective diffusivity controlling γ′ coarsening at high temperatures in multi-component nickel-base superalloys lay in the lower portion of this range.



This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate and the Advanced Metallic Materials Branch of the NASA Glenn Research Center. The yeoman assistance of T.M. Brown, R.E. Turner, and C.P. Lingane in conducting the experiments is gratefully acknowledged. Two of the authors (NCL, ARCG) were supported under the auspices of Contract FA8650-15-D-5230.


  1. 1.
    M. J. Donachie (ed.): Superalloys: Source Book, ASM International, Materials Park, OH, 1984.Google Scholar
  2. 2.
    M. Soucail and Y. Bienvenu: Mater. Sci. Eng. A, 1996, vol. A220, pp. 215-222.CrossRefGoogle Scholar
  3. 3.
    J. Cormier, X. Milhet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780-7786.CrossRefGoogle Scholar
  4. 4.
    R. Giraud, Z. Hervier, J. Cormier, G. Saint-Martin, F. Hamon, X. Milhet, and J. Mendez: Metall. Mater. Trans. A, 2013, vol. 44, pp. 131-146.CrossRefGoogle Scholar
  5. 5.
    F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier: J. Alloys Comp., 2016, vol. 658, pp. 981-995.CrossRefGoogle Scholar
  6. 6.
    M.J. Whelan: Metal Sci. Journal, 1969, vol. 3, pp. 95-97.CrossRefGoogle Scholar
  7. 7.
    H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.CrossRefGoogle Scholar
  8. 8.
    H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.CrossRefGoogle Scholar
  9. 9.
    G. Wang, D.S. Xu, N. Ma, N. Zhou, E.J. Payton, R. Yang, M.J. Mills, and Y. Wang: Acta Mater., 2009, vol. 57, pp. 316-325.CrossRefGoogle Scholar
  10. 10.
    R.D. Doherty: Msdkf fldf f, In: R.W. Cahn and P. Haasen, eds.,in Physical Metallurgy, North-Holland, Amsterdam, 1996Google Scholar
  11. 11.
    D. Turnbull (1958) Fmr hth htyht. In: F. Seitz and D. Turnbull, eds., Solid-State Physics, vol. 3. Academic Press, New York, pp. 226-306.Google Scholar
  12. 12.
    A. Kelly and R.B. Nicholson: Progress in Materials Sci., 1963, vol. 10, pp. 151-391.CrossRefGoogle Scholar
  13. 13.
    K.C. Russell: in Phase Transformations, ASM, Metals Park, OH, 1970, pp. 219-268.Google Scholar
  14. 14.
    J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd Edition, Pergamon Press, Oxford, UK, 1975.Google Scholar
  15. 15.
    K.C. Russell: Advances in Colloid and Interface Sci., 1980, vol. 13, pp. 205-318.CrossRefGoogle Scholar
  16. 16.
    P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby: Decomposition of Alloys: The Early Stages, Pergamon Press, Oxford, UK, 1984.Google Scholar
  17. 17.
    H.I. Aaronson and F.K. LeGoues: Metall. Trans. A, 1992, vol. 23, pp. 1915-1945.CrossRefGoogle Scholar
  18. 18.
    H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University press, London, 1959.Google Scholar
  19. 19.
    H.B. Aaron, D. Fainstein, and G.R. Kotler: J. Applied Phys., 1970, vol. 41, pp. 4404-4410.CrossRefGoogle Scholar
  20. 20.
    J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
  21. 21.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-51.CrossRefGoogle Scholar
  22. 22.
    C. Wagner: Zeit. Elektrochem., 1961, vol. 65, pp. 581-591.Google Scholar
  23. 23.
    L. Ratke and P.W. Voorhees: Growth and Coarsening- Ostwld Ripening in Material Processing, Springer Verlag, Berlin, 2002.Google Scholar
  24. 24.
    A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61-71.CrossRefGoogle Scholar
  25. 25.
    A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27, pp. 489-497.CrossRefGoogle Scholar
  26. 26.
    P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2001-2011.CrossRefGoogle Scholar
  27. 27.
    P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2013-2030.CrossRefGoogle Scholar
  28. 28.
    H. A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz: Acta Metall. et Mater., 1994, vol. 42, pp. 991-1000.CrossRefGoogle Scholar
  29. 29.
    A. Umantsev and G.B. Olson: Scripta Metall. et Mater., 1993, vol. 29, pp. 1135-1140.CrossRefGoogle Scholar
  30. 30.
    J.E. Morral and G.R. Purdy: Scripta Metall. et Mater., 1994, vol. 30, pp. 905-908.CrossRefGoogle Scholar
  31. 31.
    C.J. Kuehmann and P.W. Voorhees: Metall. and Mater. Trans A, 1996, vol. 27A, pp. 937-943.CrossRefGoogle Scholar
  32. 32.
    A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2379-2405.CrossRefGoogle Scholar
  33. 33.
    V. Biss and D.L. Sponseller: Metall. Trans., 1973, vol. 4, pp. 1953-1960.CrossRefGoogle Scholar
  34. 34.
    P.K. Footner and B.P. Richards: J. Mater. Sci., 1982, vol. 17, pp. 2141-2153.CrossRefGoogle Scholar
  35. 35.
    H. Li, L. Zuo, X. Song, Y. Wang, and G. Chen: Rare Metals, 2009, vol. 28(2), pp. 197-201.CrossRefGoogle Scholar
  36. 36.
    E.H. van der Molen, J.M. Oblak, and O.H. Kriege: Metall. Trans., 1971, vol. 2, pp. 1627-1633.Google Scholar
  37. 37.
    A.A. Hopgood and J.W. Martin: Mater. Sci. Tech., 1986, vol. 2, pp. 543-546.CrossRefGoogle Scholar
  38. 38.
    H.T. Kim, S.S. Chun, X.X. Yao, Y. Fang, and J. Choi: J. Mater. Sci., 1997, vol. 32, pp. 4917-4923.CrossRefGoogle Scholar
  39. 39.
    A. Ges, O. Fornaro, and H. Palacio: J. Mater. Sci., 1997, vol. 32, pp. 3687-3691.CrossRefGoogle Scholar
  40. 40.
    A. Ges, O. Fornaro, and H. Palacio: Mater. Sci.Eng., 2007, vol. A458, pp. 96-100.CrossRefGoogle Scholar
  41. 41.
    J. Lapin, M. Gebura, T. Pelachova, and M. Nazmy: Kovove Mater., 2008, vol. 46, pp. 313-322.Google Scholar
  42. 42.
    J.S. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2538-2549.CrossRefGoogle Scholar
  43. 43.
    X. Li, N. Saunders, and A.P. Miodownik: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3367-3373.CrossRefGoogle Scholar
  44. 44.
    C. Ai, X. Zhao, J. Zhou, H. Zhang, L Liu, Y. Pei, S. Li, and S. Gong: J. Alloys and Compounds, 2015, vol. 632, pp. 558-562.CrossRefGoogle Scholar
  45. 45.
    M. Mrotzek and E. Nembach: Acta Mater., 2008, vol. 56, pp. 150-154.CrossRefGoogle Scholar
  46. 46.
    J. Coakley, H. Basoalto, and D. Dye: Acta Mater., 2010, vol. 58, pp. 4019-4028.CrossRefGoogle Scholar
  47. 47.
    R.V. Miner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1011-1020.CrossRefGoogle Scholar
  48. 48.
    J. Sosa, M. Huber, D.E. Welk, and H.L. Fraser: IMMI, 2014, vol. 3 (18).Google Scholar
  49. 49.
    T.M. Smith, P. Bonacuse, J. Sosa, M. Kulis, and L. Evans: Mater. Characterization, 2018, vol. 140, pp. 86-94.CrossRefGoogle Scholar
  50. 50.
    A.R.C. Gerlt, R.S. Picard, A.E. Sauber, A.K. Criner, S.L. Semiatin, and E.J. Payton: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4424-4428.CrossRefGoogle Scholar
  51. 51.
    S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, and D.U. Furrer: IMMI, 2016, vol. 5 (3).Google Scholar
  52. 52.
    C.K. Sudbrack, R.D. Noebe, D.N. Seidman: Acta Mater., 2007, vol. 55, pp.119–130.CrossRefGoogle Scholar
  53. 53.
    S.L. Semiatin, B.C. Kirby, and G.A. Salishchev: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2809-2819.CrossRefGoogle Scholar
  54. 54.
    M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Warrandale, PA, 2000, pp. 263–272.Google Scholar
  55. 55.
    C.E. Campbell: J. Phase Equil Diffusion, 2004, vol. 25, pp. 6-15.CrossRefGoogle Scholar
  56. 56.
    R.A. MacKay and M.V. Nathal: Acta Metall. Mater., 1990, vol. 38, pp. 993-1005.CrossRefGoogle Scholar
  57. 57.
    D.A. Grose and G.S. Ansell: Metall. Trans. A, 1981, vol. 12A, pp. 1631-1645.CrossRefGoogle Scholar
  58. 58.
    T.P. Gabb, J. Gayda, D.F. Johnson, R.A. MacKay,, R.B. Rogers, C.K. Sudbrack, A. Garg, I.E. Locci, S.L. Semiatin, and E. Kang, “Comparison of γ - γ′ Phase Coarsening Response of Three Powder Metal Disk Superalloys,” Report NASA/TM-2016-218936, NASA Glenn Research Center, Cleveland, OH, February 2016.Google Scholar
  59. 59.
    A.J. Ardell and V. Ozolins: Nature Materials, 2005, vol. 4, pp. 309-316.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • S. L. Semiatin
    • 1
    Email author
  • N. C. Levkulich
    • 2
  • A. R. C. Gerlt
    • 2
  • E. J. Payton
    • 1
  • J. S. Tiley
    • 1
  • F. Zhang
    • 3
  • R. A. MacKay
    • 4
  • R. V. Miner
    • 4
  • T. P. Gabb
    • 4
  1. 1.Air Force Research Laboratory, Materials and Manufacturing DirectorateWright-Patterson Air Force BaseUSA
  2. 2.UES, Inc.DaytonUSA
  3. 3.CompuTherm LLCMiddletonUSA
  4. 4.NASA Glenn Research CenterClevelandUSA

Personalised recommendations