In Situ Studies on the Irradiation-Induced Twin Boundary-Defect Interactions in Cu

Abstract

Polycrystalline Cu films with nanoscale annealing twins are subjected to in situ Kr++ ion irradiation at room temperature inside a transmission electron microscope up to a dose of 1 displacement-per-atom. Radiation induces prominent migration of incoherent twin boundaries. Depending on twin thickness, three types of twin boundary evolutions are observed, including rapid detwinning, gradual detwinning, and self-healing. The mechanism of twin thickness-dependent evolution of microstructures is discussed. This study provides further evidence on twin boundary-defect interactions and may assist the design of radiation-tolerant twinned metallic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig. 6
Fig.7

References

  1. 1.

    1. XH Chen, L Lu and K Lu, J. Appl. Phys., 2007, vol. 102, pp. 083708.

    Article  Google Scholar 

  2. 2.

    2. Lei Lu, Yongfeng Shen, Xianhua Chen, Lihua Qian and Ke Lu, Science, 2004, vol. 304, pp. 422-426.

    Article  Google Scholar 

  3. 3.

    3. O Anderoglu, A Misra, H Wang, F Ronning, MF Hundley and X Zhang, J. Appl. Phys., 2008, vol. 93, pp. 083108.

    Google Scholar 

  4. 4.

    4. O Anderoglu, A Misra, H Wang and X Zhang, J. Appl. Phys., 2008, vol. 103, pp. 094322.

    Article  Google Scholar 

  5. 5.

    5. X Zhang, A Misra, H Wang, JG Swadener, AL Lima, MF Hundley and RG Hoagland, Appl. Phys. Lett., 2005, vol. 87, pp. 233116.

    Article  Google Scholar 

  6. 6.

    6. X Zhang, A Misra, H Wang, TD Shen, M Nastasi, TE Mitchell, JP Hirth, RG Hoagland and JD Embury, Acta Mater., 2004, vol. 52, pp. 995-1002.

    Article  Google Scholar 

  7. 7.

    7. M Dao, L Lu, YF Shen and S Suresh, Acta Mater., 2006, vol. 54, pp. 5421-5432.

    Article  Google Scholar 

  8. 8.

    8. Ke Lu, Lei Lu and S Suresh, Science, 2009, vol. 324, pp. 349-352.

    Article  Google Scholar 

  9. 9.

    9. F Sansoz, K Lu, T Zhu and A Misra, MRS Bull., 2016, vol. 41, pp. 292-297.

    Article  Google Scholar 

  10. 10.

    10. Jian Wang and Xinghang Zhang, MRS Bull., 2016, vol. 41, pp. 274-281.

    Article  Google Scholar 

  11. 11.

    11. D Bufford, H Wang and X Zhang, Acta Mater., 2011, vol. 59, pp. 93-101.

    Article  Google Scholar 

  12. 12.

    12. L Lu, X Chen, Xiaoxu Huang and K Lu, Science, 2009, vol. 323, pp. 607-610.

    Article  Google Scholar 

  13. 13.

    13. Xiaoyan Li, Yujie Wei, Lei Lu, Ke Lu and Huajian Gao, Nature, 2010, vol. 464, pp. 877-880.

    Article  Google Scholar 

  14. 14.

    I.J. Beyerlein, X. Zhang and A. Misra, Annu. Rev. Mater. Res., 2014, vol. 44, pp. 329-363

    Article  Google Scholar 

  15. 15.

    15. Jianmin Miao, J. Appl. Phys., 2008, vol. 104, pp. 113717.

    Article  Google Scholar 

  16. 16.

    16. Kuan-Chia Chen, Wen-Wei Wu, Chien-Neng Liao, Lih-Juann Chen and KN Tu, J. Appl. Phys., 2010, vol. 108, pp. 066103.

    Article  Google Scholar 

  17. 17.

    17. Y Liu, J Jian, Y Chen, H Wang and X Zhang, Appl. Phys. Lett. 2014, vol. 104, pp. 231910.

    Article  Google Scholar 

  18. 18.

    18. J Wang, N Li, O Anderoglu, X Zhang, A Misra, JY Huang and JP Hirth, Acta Mater., 2010, vol. 58, pp. 2262-2270.

    Article  Google Scholar 

  19. 19.

    GH Campbell, DK Chan, DL Medlin, JE Angelo and CB Carter, Scripta Mater., 1996, vol. 35, pp. 837-842

    Article  Google Scholar 

  20. 20.

    CB Carter, DL Medlin, JE Angelo and MJ Mills, Mater. Sci. Forum, 1996, vol. 27, pp. 209-212

    Article  Google Scholar 

  21. 21.

    21. DL Medlin, GH Campbell and C Barry Carter, Acta Mater., 1998, vol. 46, pp. 5135-5142.

    Article  Google Scholar 

  22. 22.

    22. J Wang, O Anderoglu, JP Hirth, A Misra and X Zhang, Appl. Phys. Lett 2009, vol. 95, pp. 021908.

    Article  Google Scholar 

  23. 23.

    23. J Wang, A Misra and JP Hirth, Phys. Rev. B, 2011, vol. 83, pp. 064106.

    Article  Google Scholar 

  24. 24.

    24. G Van Tendeloo, D Broddin, HW Zandbergen and S Amelinckx, Phys. C, 1990, vol. 167, pp. 627-639.

    Article  Google Scholar 

  25. 25.

    25. N Li, J Wang, JY Huang, A Misra and X Zhang, Scr. Mater., 2011, vol. 64, pp. 149-152.

    Article  Google Scholar 

  26. 26.

    AM Hodge, TA Furnish, CJ Shute, Y Liao, X Huang, CS Hong, YT Zhu, TW Barbee Jr and JR Weertman, Scr. Mater., 2012, vol. 66, pp. 872-877

    Article  Google Scholar 

  27. 27.

    MJ Demkowicz, O Anderoglu, X Zhang and A Misra, J. Mater. Res., 2011, vol. 26, pp. 1666-1675

    Article  Google Scholar 

  28. 28.

    28. N Li, J Wang, YQ Wang, Y Serruys, Michael Nastasi and A Misra, J. Appl. Phys., 2013, vol. 113, pp. 023508.

    Article  Google Scholar 

  29. 29.

    29. KY Yu, D Bufford, C Sun, Y Liu, H Wang, MA Kirk, M Li and X Zhang, Nat. Commun., 2013, vol. 4, pp. 1377.

    Article  Google Scholar 

  30. 30.

    30. K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M.A. Kirk and X. Zhang, Scr. Mater., 2013, vol. 69, pp. 385.

    Article  Google Scholar 

  31. 31.

    31. Dingkun Song, Xiaoguai Li, Jianming Xue, Huiling Duan and Zhaohui Jin, Philos. Mag. Lett., 2014, vol. 94, pp. 361-369.

    Article  Google Scholar 

  32. 32.

    Y Chen, K Y Yu, Y Liu, S Shao, H Wang, MA Kirk, J Wang and X Zhang, Nat. Commun., 2015, vol. 6, pp. 7036.

    Article  Google Scholar 

  33. 33.

    33. J Li, KY Yu, Y Chen, M Song, H Wang, MA Kirk, M Li and X Zhang, Nano Lett., 2015, vol. 15, pp. 2922-2927.

    Article  Google Scholar 

  34. 34.

    34. Y Chen, J Li, KY Yu, H Wang, MA Kirk, M Li and X Zhang, Acta Mater., 2016, vol. 111, pp. 148-156.

    Article  Google Scholar 

  35. 35.

    35. Y Chen, H Wang, MA Kirk, M Li, J Wang and X Zhang, Scr. Mater., 2017, vol. 130, pp. 37-41.

    Article  Google Scholar 

  36. 36.

    JF Ziegler, MD Ziegler and JP Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, pp. 1818-1823

    Article  Google Scholar 

  37. 37.

    RE Stoller, MB Toloczko, GS Was, AG Certain, S Dwaraknath and FA Garner, Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 310, pp. 75-80

    Article  Google Scholar 

  38. 38.

    38. N Li, J Wang, A Misra, X Zhang, JY Huang and JP Hirth, Acta Mater., 2011, vol. 59, pp. 5989-5996.

    Article  Google Scholar 

  39. 39.

    D Xu, WL Kwan, K Chen, X Zhang, V Ozoliņš and KN Tu, Appl. Phys. Lett., 2007, vol. 91, pp. 254105

    Article  Google Scholar 

  40. 40.

    Ting Zhu, Ju Li, Amit Samanta, Austin Leach and Ken Gall, Phys. Rev. Lett., 2008, vol. 100, pp. 025502.

    Article  Google Scholar 

  41. 41.

    SJ Zinkle, Compr. Nucl. Mater., 2012, vol. 1, pp. 65-98.

    Article  Google Scholar 

  42. 42.

    42. Brian D Wirth, Science, 2007, vol. 318, pp. 923-924.

    Article  Google Scholar 

  43. 43.

    43. So J Zinkle and K Farrell, J. Nucl. Mater., 1989, vol. 168, pp. 262-267.

    Article  Google Scholar 

  44. 44.

    44. Yu N Osetsky, DJ Bacon, A Serra, BN Singh and SI Golubov, J. Nucl. Mater., 2000, vol. 276, pp. 65-77.

    Article  Google Scholar 

  45. 45.

    DJ Bacon, YN Osetsky, R Stoller and RE Voskoboinikov, J. Nucl. Mater., 2003, vol. 323, pp. 152-162

    Article  Google Scholar 

  46. 46.

    46. ML Jenkins, Philos. Mag., 1974, vol. 29, pp. 813-828.

    Article  Google Scholar 

  47. 47.

    47. ML Jenkins, DJH Cockayne and MJ Whelan, J. Microsc., 1973, vol. 98, pp. 155-164.

    Article  Google Scholar 

  48. 48.

    48. ML Jenkins, J. Nucl. Mater., 1994, vol. 216, pp. 124-156.

    Article  Google Scholar 

  49. 49.

    49. Hiroaki Abe, Naoto Sekimura and Yunmin Yang, J. Nucl. Mater., 2003, vol. 323, pp. 220-228.

    Article  Google Scholar 

  50. 50.

    50. Yoshitaka Matsukawa and Steven J Zinkle, Science, 2007, vol. 318, pp. 959-962.

    Article  Google Scholar 

  51. 51.

    K. Arakawa, K. Ono, H. Mori, A.S. Avilov, S.L. Dudarev and L.D. Marks, AIP Conf. Proc., vol. 99, pp. 66–78.

  52. 52.

    X-M Bai, AF Voter, RG Hoagland, M Nastasi and BP Uberuaga, Science, 2010, vol. 327, pp. 1631-1634.

    Article  Google Scholar 

  53. 53.

    J Li, Y Chen, H Wang and X Zhang, Metall. Mater. Trans. A 2017, vol. 48, pp. 1466-1473

    Article  Google Scholar 

  54. 54.

    MK Miller, CM Parish and H Bei, J. Nucl. Mater. 2015, vol. 462, pp. 422-427

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by NSF-DMR-Metallic Materials and Nanostructures Program under Grant No. 1643915. H.W. acknowledges the support from the U.S. Office of Naval Research (N00014-16-1-2778). The work on the fabrication of nanotwinned metals is supported by DOE-OBES under Grant No. DE-SC0016337. We also thank Peter M. Baldo and Edward A. Ryan at Argonne National Laboratory for their help during in situ radiation experiments. The IVEM facility at Argonne National Laboratory is supported by DOE-Office of Nuclear Energy. Access to the Microscopy Center at Purdue University is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Additional information

Manuscript submitted May 20, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 11164 kb)

Supplementary material 2 (MP4 8825 kb)

Supplementary material 3 (MP4 10529 kb)

Supplementary material 4 (MP4 10177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Li, J., Fan, Z. et al. In Situ Studies on the Irradiation-Induced Twin Boundary-Defect Interactions in Cu. Metall Mater Trans A 48, 5172–5180 (2017). https://doi.org/10.1007/s11661-017-4293-5

Download citation