In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni

Significant microstructural damage, in the form of defect clusters, typically occurs in metals subjected to heavy ion irradiation. High angle grain boundaries (GBs) have long been postulated as sinks for defect clusters, like dislocation loops. Here, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle GBs in nanocrystalline (NC) Ni, with an average grain size of ~55 nm, can effectively absorb irradiation-induced dislocation loops and segments. These high angle GBs significantly reduce the density and size of irradiation-induced defect clusters in NC Ni compared to their bulk counterparts, and thus NC Ni achieves significant enhancement of irradiation tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    G. Was: Fundamentals of Radiation Materials Science, Springer, New York, 2007.

    Google Scholar 

  2. 2.

    H. R. Brager and J. L. Straalsund, J. Nucl. Mater., 1973, vol. 46, pp. 134-158.

    Article  CAS  Google Scholar 

  3. 3.

    E. Wakai, N. Hashimoto, J. P. Robertson, T. Sawai and A. Hishinuma, J. Nucl. Mater., 2002, vol. 307-311, pp. 352-356.

    Article  Google Scholar 

  4. 4.

    T. R. Allen, J. Gan, J. I. Cole, M. K. Miller, J. T. Busby, S. Shutthanandan and S. Thevuthasan, J. Nucl. Mater., 2008, vol. 375, pp. 26-37.

    Article  CAS  Google Scholar 

  5. 5.

    T. Yamamoto, G.R. Odette, P. Miao, D.T. Hoelzer, J. Bentley, N. Hashimoto, H. Tanigawa and R.J. Kurtz: J. Nucl. Mater., 2007, vol. 367–370, Part A, pp. 399–10.

  6. 6.

    J. Saito, T. Suda, S. Yamashita, S. Ohnuki, H. Takahashi, N. Akasaka, M. Nishida and S. Ukai, J. Nucl. Mater., 1998, vol. 258–263, Part 2, pp. 1264–68.

  7. 7.

    X. Zhang, Nan Li, O. Anderoglu, H. Wang, J. G. Swadener, T. Höchbauer, A. Misra and R. G. Hoagland, Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 261, pp. 1129-1132.

    Article  CAS  Google Scholar 

  8. 8.

    M. J. Demkowicz, R. G. Hoagland and J. P. Hirth, Phys. Rev. Lett., 2008, vol. 100, pp. 136102.

    Article  CAS  Google Scholar 

  9. 9.

    N. Li, J. J. Carter, A. Misra, L. Shao, H. Wang and X. Zhang, Philos. Mag. Lett., 2011, vol. 91, pp. 18-28.

    Article  CAS  Google Scholar 

  10. 10.

    E. G. Fu, A. Misra, H. Wang, Lin Shao and X. Zhang, J. Nucl. Mater., 2010, vol. 407, pp. 178-188.

    Article  CAS  Google Scholar 

  11. 11.

    Q. M. Wei, N. Li, N. Mara, M. Nastasi and A. Misra, Acta Mater., 2011, vol. 59, pp. 6331-6340.

    Article  CAS  Google Scholar 

  12. 12.

    H. Trinkaus and B. N. Singh, J. Nucl. Mater., 2003, vol. 323, pp. 229-242.

    Article  CAS  Google Scholar 

  13. 13.

    T.D. Shen, Nucl. Instrum. Methods Phys. Res. B, 2008, vol. 266, pp. 921–25.

  14. 14.

    M. Rose, A.G. Balogh, and H. Hahn: Nucl. Instrum. Methods Phys. Res. B, 1997, vol. 127–128, pp. 119–22.

  15. 15.

    C. Sun, K. Y. Yu, J. H. Lee, Y. Liu, H. Wang, L. Shao, S. A. Maloy, K. T. Hartwig and X. Zhang, J. Nucl. Mater., 2012, vol. 420, pp. 235-240.

    Article  CAS  Google Scholar 

  16. 16.

    K. Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. G. Fu and X. Zhang, J. Nucl. Mater., 2012, vol. 425, pp. 140-146.

    Article  CAS  Google Scholar 

  17. 17.

    M. Samaras, P. M. Derlet, H. Van Swygenhoven and M. Victoria, Phys. Rev. Lett., 2002, vol. 88, pp. 125505.

    Article  CAS  Google Scholar 

  18. 18.

    X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga, Science, 2010, vol. 327, pp. 1631-1634.

    Article  CAS  Google Scholar 

  19. 19.

    B. N. Singh, Philos. Mag., 1974, vol. 29, pp. 25 - 42.

    Article  CAS  Google Scholar 

  20. 20.

    T. D. Shen, S. Feng, M. Tang, J. A. Valdez, Y. Q. Wang and K. E. Sickafus, Appl. Phys. Lett., 2007, vol. 90, pp. 263115.

    Article  Google Scholar 

  21. 21.

    A. R. Kilmametov, D. V. Gunderov, R. Z. Valiev, A. G. Balogh and H. Hahn, Scripta Mater., 2008, vol. 59, pp. 1027-1030.

    Article  CAS  Google Scholar 

  22. 22.

    Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami and S. Okuda, J. Nucl. Mater., 2001, vol. 297, pp. 355-357.

    Article  CAS  Google Scholar 

  23. 23.

    B. Radiguet, A. Etienne, P. Pareige, X. Sauvage and R. Valiev, J. Mater. Sci., 2008, vol. 43, pp. 7338-7343.

    Article  CAS  Google Scholar 

  24. 24.

    W. Voegeli, K. Albe and H. Hahn, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 202, pp. 230-235.

    Article  CAS  Google Scholar 

  25. 25.

    D. Kaoumi, A. T. Motta and R. C. Birtcher, J. Appl. Phys., 2008, vol. 104, pp. 073525.

    Article  Google Scholar 

  26. 26.

    H. A. Atwater, C. V. Thompson and H. I. Smith, J. Appl. Phys., 1988, vol. 64, pp. 2337-2353.

    Article  CAS  Google Scholar 

  27. 27.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science, Springer, New York, 2009.

  28. 28.

    J.P. Biersack, J.F. Ziegler, and M.D. Ziegler: Calculation Using the Stopping and Range of Ions in Matter (SRIM) Code., 2008.

  29. 29.

    R. C. Birtcher, M. Kirk, K. Furuya, G. R. Lumpkin and M-O. Ruault, J. Mater. Res., 2005, vol. 20, pp. 1654-1683.

    Article  CAS  Google Scholar 

  30. 30.

    R. Sizmann, J. Nucl. Mater., 1978, vol. 69–70, pp. 386-412.

    Article  Google Scholar 

  31. 31.

    J. P. Hirth and J. Lothe: Theory of dislocations, Wiley, New York, 1982.

    Google Scholar 

  32. 32.

    P. T. Heald and J. E. Harbottle, J. Nucl. Mater., 1977, vol. 67, pp. 229-233.

    Article  CAS  Google Scholar 

  33. 33.

    S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B, 1986, vol. 33, pp. 7983-7991.

    Article  CAS  Google Scholar 

  34. 34.

    A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande and A. Barbu, J. Nucl. Mater., 2002, vol. 302, pp. 143-155.

    Article  CAS  Google Scholar 

  35. 35.

    B. D. Wirth, G. R. Odette, D. Maroudas and G. E. Lucas, J. Nucl. Mater., 2000, vol. 276, pp. 33-40.

    Article  CAS  Google Scholar 

  36. 36.

    S. Chandrasekhar, Rev. Mod. Phys., 1943, vol. 15, pp. 1-89.

    Article  Google Scholar 

  37. 37.

    K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi and H. Mori, Science, 2007, vol. 318, pp. 956-959.

    Article  CAS  Google Scholar 

  38. 38.

    E. Kuramoto, J. Nucl. Mater., 2000, vol. 276, pp. 143-153.

    Article  CAS  Google Scholar 

  39. 39.

    E. W. Hart, Acta Metall., 1957, vol. 5, pp. 597.

    Article  CAS  Google Scholar 

  40. 40.

    R. W. Balluffi, physica status solidi (b), 1970, vol. 42, pp. 11-34.

    Article  CAS  Google Scholar 

Download references


We acknowledge financial support by the DOE-NEUP under contract no. DE-AC07-05ID14517-00088120. Partial support by the US Army Research Office—Materials Science Division—is also acknowledged under contract no. W911NF-09-1-0223. We also thank John Hirth and Lin Shao for their helpful discussions.

Author information



Corresponding author

Correspondence to X. Zhang.

Additional information

Manuscript submitted April 9, 2012.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video #1: Absorption of an individual dislocation loop by the GB. The dislocation loop is rapidly absorbed by the GB. Loops far away from GBs can recombine with the opposite type of defect clusters, be absorbed by free surface, or aggregate to form a larger cluster (WMV 2770 kb)

Video #2: Absorption of dislocation segment by the GB. The combination of dislocation loops in NC Ni, followed by their gradual absorption by adjacent GBs (WMV 3684 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, C., Song, M., Yu, K.Y. et al. In situ Evidence of Defect Cluster Absorption by Grain Boundaries in Kr Ion Irradiated Nanocrystalline Ni. Metall Mater Trans A 44, 1966–1974 (2013).

Download citation


  • Dislocation Loop
  • Defect Cluster
  • Dislocation Segment
  • Pipe Diffusion
  • Frank Loop