A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation

Abstract

The dynamic behavior of ultrasound-induced cavitation bubbles and their effect on the fragmentation of dendritic grains of a solidifying succinonitrile 1 wt pct camphor organic transparent alloy have been studied experimentally using high-speed digital imaging and complementary numerical analysis of sound wave propagation, cavitation dynamics, and the velocity field in the vicinity of an imploding cavitation bubble. Real-time imaging and analysis revealed that the violent implosion of bubbles created local shock waves that could shatter dendrites nearby into small pieces in a few tens of milliseconds. These catastrophic events were effective in breaking up growing dendritic grains and creating abundant fragmented crystals that may act as embryonic grains; therefore, these events play an important role in grain refinement of metallurgical alloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, 1st ed., Gordon and Breach Science Publishers, Amsterdam, the Netherlands, 1998.

  2. 2.

    X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.

    Article  CAS  Google Scholar 

  3. 3.

    X. Liu, Y. Osawa, S. Takamori, and T. Mukai: Mater. Sci. Eng. A, 2008, vol. 487, pp. 120–23.

    Article  Google Scholar 

  4. 4.

    D. Gao, Z. Li, Q. Han, and Q. Zhai: Mater. Sci. Eng. A, 2009, vol. 502, pp. 2–5.

    Article  Google Scholar 

  5. 5.

    O.V. Abramov: Ultrasonics, 1987, vol. 25, pp. 73–82.

    Article  CAS  Google Scholar 

  6. 6.

    Q. Liu, Q. Zhai, F. Qi, and Y. Zhang: Mater. Lett., 2007, vol. 61, pp. 2422–25.

    Article  CAS  Google Scholar 

  7. 7.

    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2056–66.

    Article  CAS  Google Scholar 

  8. 8.

    M. Qian and A. Ramirez: J. Appl. Phys., 2009, vol. 105, pp. 013538.1–013538.6.

    Google Scholar 

  9. 9.

    G.I. Eskin: Metallurgist, 2003, vol. 47, pp. 265–72.

    Article  CAS  Google Scholar 

  10. 10.

    R. Hickling: Nature, 1965, vol. 206, pp. 915–17.

    Article  Google Scholar 

  11. 11.

    J.D. Hunt and K.A. Jackson: J. Appl. Phys., 1966, vol. 37, pp. 254–57.

    Article  CAS  Google Scholar 

  12. 12.

    C.J. Paradies, R.N. Smith, and M.E. Glicksman: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 875–83.

    CAS  Google Scholar 

  13. 13.

    T. Li, X. Lin, and W. Huang: Acta Mater., 2006, vol. 54, pp. 4815–24.

    Article  CAS  Google Scholar 

  14. 14.

    W.L. Wang, K.S. Wang, and X. Lin: Int. J. Cast Met. Res., 2010, vol. 23, pp. 344–48.

    Article  CAS  Google Scholar 

  15. 15.

    G.M. Swallowe, J.E. Field, C.S. Rees, and A. Duckworth: Acta Metall., 1989, vol. 37, pp. 961–67.

    Article  CAS  Google Scholar 

  16. 16.

    R. Chow, R. Blindt, R. Chivers, and M. Povey: Ultrasonics, 2003, vol. 41, pp. 595–604.

    Article  CAS  Google Scholar 

  17. 17.

    R. Chow, R. Blindt, A. Kamp, P. Grocutt, and R. Chivers: Ultrason. Sonochem., 2004, vol. 11, pp. 245–50.

    Article  CAS  Google Scholar 

  18. 18.

    R.M. Wagterveld, L. Boels, M.J. Mayer, and G.J. Witkamp: Ultrason. Sonochem., 2011, vol. 18, pp. 216–25.

    Article  CAS  Google Scholar 

  19. 19.

    B.W. Zeiger and K.S. Suslick: J. Am. Chem. Soc., 2011, vol. 133, pp. 14530–33.

    Article  CAS  Google Scholar 

  20. 20.

    R. Pecha and B. Gompf: Phys. Rev. Lett., 2000, vol. 84, pp. 1328–30.

    Article  CAS  Google Scholar 

  21. 21.

    K.S. Suslick: Encyclopedia of Physical Science and Technology, Academic Press Inc., San Diego, CA, 2001, pp. 363–76.

    Google Scholar 

  22. 22.

    J. Campbell: Int. Met. Rev., 1981, vol. 26, pp. 71–108.

    Article  CAS  Google Scholar 

  23. 23.

    A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.

    Article  CAS  Google Scholar 

  24. 24.

    D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–92.

    Article  CAS  Google Scholar 

  25. 25.

    A. Ludwig and W. Kurz: Acta Mater., 1996, vol. 44, pp. 3643–54.

    Article  CAS  Google Scholar 

  26. 26.

    P. Tin, D. Frate, and H.C. de Groh III: Int. J. Thermophys., 2001, vol. 22, pp. 557–68.

    Article  CAS  Google Scholar 

  27. 27.

    M. Serefoglu and R.E. Napolitano: Acta Mater., 2008, vol. 56, pp. 3862–73.

    Article  CAS  Google Scholar 

  28. 28.

    J. Klima, A. Frias-Ferrer, J. Gonzalez-Garcia, J. Ludvik, V. Saez, and J. Iniesta: Ultrason. Sonochem., 2007, vol. 14, pp. 19–28.

    Article  CAS  Google Scholar 

  29. 29.

    F.R. Gilmore: Hydrodynamics Laboratory Report 26-4, California Institute of Technology, Pasadena, CA, 1952.

  30. 30.

    V. Minsier and J. Proost: Ultrason. Sonochem., 2008, vol. 15, pp. 598–604.

    Article  CAS  Google Scholar 

  31. 31.

    Y. Lee, S. Karng, J. Jeon, and H. Kwak: J. Phys. Soc. Jap., 1997, vol. 66, pp. 2537–40.

    Article  CAS  Google Scholar 

  32. 32.

    J. Holzfuss: Phys. Rev. Lett., 1998, vol. 81, pp. 5434–37.

    Article  CAS  Google Scholar 

  33. 33.

    J. Pilling and A. Hellawell: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 229–32.

    Article  CAS  Google Scholar 

  34. 34.

    A. Vogel, R.D. Doherty, and B. Cantor: Solidification and Casting of Metals, TMS, London, U.K., 1979, pp. 518–25.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the National Natural Science Foundation of China (Nos. 50825401 and 51174135), the National Basic Research Program of China (No. 2012CB619505), the U.K. Royal Society (International Joint Project 2007/R4, Research Grants 2010 R2 and an Industry Fellowship award), and the U.K. Engineering and Physical Sciences Research Council Centre for Liquid Metal Engineering (Grant No. EP/H026177/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Da Shu.

Additional information

Manuscript submitted September 27, 2011.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11661_2012_1188_MOESM1_ESM.avi

Supplementary material 1 (AVI 5675 kb)

11661_2012_1188_MOESM2_ESM.avi

Supplementary material 2 (AVI 8480 kb)

Supplementary material 3 (AVI 2092 kb)

Supplementary material 1 (AVI 5675 kb)

Supplementary material 2 (AVI 8480 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shu, D., Sun, B., Mi, J. et al. A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation. Metall Mater Trans A 43, 3755–3766 (2012). https://doi.org/10.1007/s11661-012-1188-3

Download citation

Keywords

  • Cavitation
  • Acoustic Pressure
  • Cavitation Bubble
  • Ultrasonic Probe
  • Bubble Wall