Prevalence of osteoporosis among the elderly population of Iran



In a large population-based study of Iran, the age-standardized prevalence of osteoporosis was 24.6% in men and 62.7% in women aged ≥ 60 years. Osteoporosis was negatively associated with body mass index in both sexes, and with diabetes in men and hypertriglyceridemia in women.


Population aging has made osteoporosis and osteoporotic fractures an important health problem, especially in developing countries. This study aimed to explore the prevalence of osteoporosis and associated factors among the elderly population of the south-west of Iran.


Baseline data of the second stage of the Bushehr Elderly Health program was used. Spinal, total hip, or femoral neck osteoporosis was described as a BMD that lies 2.5 standard deviations or more, below the average values of a young healthy adult in the lumbar spine, total hip, or femoral neck, respectively. Osteoporosis at either site was defined as total osteoporosis. Age-standardized prevalence of osteoporosis was estimated. We used the modified Poisson regression with a robust variance estimator to identify the factors related to osteoporosis, adjusting for potential confounders.


Overall, 2425 individuals (1166 men) aged over 60 years were included. In all, total osteoporosis was detected in 1006 (41.5%) of the participants. Using the reference value derived from Caucasian women aged 20–29 years, the age-standardized prevalence of total osteoporosis was 24.6 (95% CI: 21.9–27.3) in men, and 62.7 (95% CI: 60.0–65.4) in women. In men, osteoporosis was positively associated with age, smoking, history of fracture, and history of renal/liver diseases and negatively associated with body mass index (BMI) and diabetes. BMI, hypertriglyceridemia, and education were negatively correlated with osteoporosis in women, while years after menopause and history of fracture increased the likelihood of osteoporosis, significantly.


Results support the high prevalence of osteoporosis and osteopenia in the elderly population. Considering the importance of severe complications, especially fractures, comprehensive interventions should be expanded.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Leslie WD, Morin SN (2014) Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol 26(4):440–446

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Cooper C, Campion G (1992) and L.r. Melton, Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Cosman F, de Beur SJ, LeBoff M, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis Foundation (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4., T.G.B.o.O.A.F.A.f.

  5. 5.

    Handa R, Kalla AA, Maalouf G (2008) Osteoporosis in developing countries. Best Pract Res Clin Rheumatol 22(4):693–708

    PubMed  Article  Google Scholar 

  6. 6.

    Compston J et al (2017) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 12(1):43

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Oden A et al (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26(9):2243–2248

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(2):S3–S11

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    El-Hajj Fuleihan G, Adib G, Nauroy L (2011) The middle east & Africa regional audit, epidemiology, costs & burden of osteoporosis in 2011. Int Osteoporos Found 102011–105000

  10. 10.

    Pourhashem Z et al (2012) Prevalence of osteoporosis and its association with serum vitamin D level in older people in Amirkola, North of Iran. Caspian J Intern Med 3(1):347

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Doosti-Irani A, Ghafari M, Cheraghi Z (2018) The high prevalence of osteoporosis as a preventable disease: the need for greater attention to prevention programs in Iran. Iran J Public Health 47(8):1220–1221

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jordan K, Cooper C (2002) Epidemiology of osteoporosis. Best practice & research. Clin Rheumatol 16(5):795–806

    CAS  Google Scholar 

  13. 13.

    Rahnavard Z et al (2009) The incidence of osteoporotic hip fracture: Iranian Multicenter osteoporosis study (IMOS). Res J Biol Sci 4(2):171–173

    Google Scholar 

  14. 14.

    Ostovar A, Nabipour I, Larijani B, Heshmat R, Darabi H, Vahdat K, Ravanipour M, Mehrdad N, Raeisi A, Heidari G, Shafiee G, Haeri M, Pourbehi M, Sharifi F, Noroozi A, Tahmasebi R, Aghaei Meybodi H, Assadi M, Farrokhi S, Nemati R, Amini MR, Barekat M, Amini A, Salimipour H, Dobaradaran S, Moshtaghi D (2015) Bushehr elderly health (BEH) Programme, phase I (cardiovascular system). BMJ Open 5(12):e009597

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Shafiee G, Ostovar A, Heshmat R, Darabi H, Sharifi F, Raeisi A, Mehrdad N, Shadman Z, Razi F, Amini MR, Arzaghi SM, Meybodi HA, Soltani A, Nabipour I, Larijani B (2017) Bushehr Elderly Health (BEH) programme: study protocol and design of musculoskeletal system and cognitive function (stage II). BMJ Open 7(8):e013606

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kanis JA et al (2013) Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int 24(11):2763–2764

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Brooks GA, Butte NF, Rand WM, Flatt JP, Caballero B (2004) Chronicle of the Institute of Medicine physical activity recommendation: how a physical activity recommendation came to be among dietary recommendations. Am J Clin Nutr 79(5):921S–930S

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Mahan LK, Raymond JL (2016) Krause’s food & the nutrition care process-e-book. Elsevier Health Sci

  19. 19.

    Census (2016) Available from:

  20. 20.

    Zou G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159(7):702–706

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Wade S et al (2014) Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos 9(1):182

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Gheita TA, Hammam N (2018) Epidemiology and awareness of osteoporosis: a viewpoint from the Middle East and North Africa. Int J Clin Rheumatol 134

  23. 23.

    Vijayakumar R, Büsselberg D (2016) Osteoporosis: an under-recognized public health problem: local and global risk factors and its regional and worldwide prevalence. J Local Global Health Sci 2

  24. 24.

    Ho SC, Chen Y-m, Woo JL (2005) Educational level and osteoporosis risk in postmenopausal Chinese women. Am J Epidemiol 161(7):680–690

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Keramat A, Patwardhan B, Larijani B, Chopra A, Mithal A, Chakravarty D, Adibi H, Khosravi A (2008) The assessment of osteoporosis risk factors in Iranian women compared with Indian women. BMC Musculoskelet Disord 9(1):28

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31(5):547–555

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Mishra AK, Gajjar K, Patel K (2016) Association between body mass index and bone mineral density among healthy women in India. Int J Med Res Health Sci 5(4):156–160

    Google Scholar 

  28. 28.

    Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12(2):181–188

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Tell-Lebanon O, Rotman-Pikielny P (2016) Osteoporosis and diabetes - in which way are they related? Harefuah 155(11):697–701

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ho-Pham LT, Chau PMN, Do AT, Nguyen HC, Nguyen TV (2018) Type 2 diabetes is associated with higher trabecular bone density but lower cortical bone density: the Vietnam Osteoporosis Study. Osteoporos Int 29(9):2059–2067

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Ward KD, Klesges RC (2001) A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 68(5):259–270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Demir B, Haberal A, Geyik P, Baskan B, Ozturkoglu E, Karacay O, Deveci S (2008) Identification of the risk factors for osteoporosis among postmenopausal women. Maturitas 60(3-4):253–256

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Peker N, Tosun ÖÇ (2018) Is grand multiparity a risk factor for the development of postmenopausal osteoporosis? Clin Interv Aging 13:505–508

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Turan V (2011) Grand-grand multiparity (more than 10 deliveries) does not convey a risk for osteoporosis. Acta Obstet Gynecol Scand 90(12):1440–1442

    PubMed  Article  Google Scholar 

  35. 35.

    Allali F, Maaroufi H, Aichaoui SE, Khazani H, Saoud B, Benyahya B, Abouqal R, Hajjaj-Hassouni N (2007) Influence of parity on bone mineral density and peripheral fracture risk in Moroccan postmenopausal women. Maturitas 57(4):392–398

    PubMed  Article  Google Scholar 

  36. 36.

    Wong SK et al (2016) The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8(6)

  37. 37.

    Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, Battaglia E (2004) Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int 74(2):136–142

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Panahi N, Soltani A, Ghasem-Zadeh A, Shafiee G, Heshmat R, Razi F, Mehrdad N, Nabipour I, Larijani B, Ostovar A (2019) Associations between the lipid profile and the lumbar spine bone mineral density and trabecular bone score in elderly Iranian individuals participating in the Bushehr Elderly Health Program: a population-based study. Arch Osteoporos 14(1):52

    PubMed  Article  Google Scholar 

  39. 39.

    Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K (2002) Plasma lipids and osteoporosis in postmenopausal women. Endocr J 49(2):211–217

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Chen YY, Wang WW, Yang L, Chen WW, Zhang HX (2018) Association between lipid profiles and osteoporosis in postmenopausal women: a meta-analysis. Eur Rev Med Pharmacol Sci 22(1):1–9

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Anaforoglu I, Nar-Demirer A, Bascil-Tutuncu N, Ertorer ME (2009) Prevalence of osteoporosis and factors affecting bone mineral density among postmenopausal Turkish women with type 2 diabetes. J Diabetes Complicat 23(1):12–17

    Article  Google Scholar 

  42. 42.

    Costantini S, Conte C (2019) Bone health in diabetes and prediabetes. World J Diabetes 10(8):421–445

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Sassi F et al (2018) Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 18(1):1–8

    Article  CAS  Google Scholar 

  44. 44.

    Hu Z, Ma C, Liang Y, Zou S, Liu X (2019) Osteoclasts in bone regeneration under type 2 diabetes mellitus. Acta Biomater 84:402–413

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Ebrahimpur M, Sharifi F, Nezhad FA, Bagherzadeh M, Ostovar A, Shafiee G, Heshmat R, Mehrdad N, Razi F, Khashayar P, Nabipour I, Larijani B (2019) Effect of diabetes on BMD and TBS values as determinants of bone health in the elderly: Bushehr Elderly Health program. J Diab Metab Disord 18(1):99–106

    CAS  Article  Google Scholar 

  46. 46.

    Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2014) Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int 25(1):97–103

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zhang J, Zhang K, Shi H, Tang Z (2015) A cross-sectional study to evaluate the associations between hypertension and osteoporosis in Chinese postmenopausal women. Int J Clin Exp Med 8(11):21194–21200

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Silva TR, Franz R, Maturana MA, Spritzer PM (2015) Associations between body composition and lifestyle factors with bone mineral density according to time since menopause in women from Southern Brazil: a cross-sectional study. BMC Endocr Disord 15:71

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Oura P, Paananen M, Niinimäki J, Tammelin T, Auvinen J, Korpelainen R, Karppinen J, Junno JA (2017) High-impact exercise in adulthood and vertebral dimensions in midlife - the Northern Finland Birth Cohort 1966 study. BMC Musculoskelet Disord 18(1):433

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Dallanezi G, Freire B, Nahás E, Nahás-Neto J, Corrente J, Mazeto G (2016) Physical activity level of post-menopausal women with low bone mineral density. Rev Bras Ginecol Obstet 38(5):225–230

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, Humphrey MB, Lane NE, Magrey M, Miller M, Morrison L, Rao M, Byun Robinson A, Saha S, Wolver S, Bannuru RR, Vaysbrot E, Osani M, Turgunbaev M, Miller AS, McAlindon T (2017) 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Care Res 69(8):1095–1110

    Article  Google Scholar 

  52. 52.

    Rizzoli R, Biver E (2015) Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11(2):98–109

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Ma CC, Xu SQ, Gong X, Wu Y, Qi S, Liu W, Xu JH (2017) Prevalence and risk factors associated with glucocorticoid-induced osteoporosis in Chinese patients with rheumatoid arthritis. Arch Osteoporos 12(1):33

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Baranova IA, Ershova OB, Anaev EK, Anokhina TN, Anoshenkova ОN, Batyn SZ, Belyaeva EA, Bolshakova TY, Volkorezov IA, Eliseeva LN, Kashnazarova EV, Kinyaikin MF, Kirpikova MN, Klyuchnikova EP, Korolev MA, Kuneevskaya IV, Masneva LV, Muradyants AA, Otteva EN, Petrachkova TN, Peshekhonova LK, Povzun AS, Raskina TA, Smirnova ML, Toroptsova NV, Khasanova RB, Shamsutdinova NG, Shaporova NL, Shitova NS, Shkireeva SY, Shostak NA, Lesnyak OM (2015) Analysis of the state-of-the-art of consulting medical care to patients with glucocorticoid-induced osteoporosis or its risk according to the data of a questionnaire survey (GLUCOST study). Ter Arkh 87(5):58–64

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Tabrizi R, Moosazadeh M, Akbari M, Dabbaghmanesh MH, Mohamadkhani M, Asemi Z, Heydari ST, Akbari M, Lankarani KB (2018) High prevalence of vitamin D deficiency among Iranian population: a systematic review and meta-analysis. Iran J Med Sci 43(2):125–139

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Heshmat R et al (2008) Vitamin D deficiency in Iran: a multi-center study among different urban areas. Iran J Public Health 37(1):72–78

    Google Scholar 

Download references


The authors would like to express their gratefulness to the staff and researchers of the Bushehr Elderly Health program for their thoughtful contribution.

Author information



Corresponding author

Correspondence to Afshin Ostovar.

Ethics declarations

Conflicts of interest


Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fahimfar, N., Noorali, S., Yousefi, S. et al. Prevalence of osteoporosis among the elderly population of Iran. Arch Osteoporos 16, 16 (2021).

Download citation


  • Osteoporosis
  • Osteopenia
  • Prevalence
  • Elderly
  • Iran