Impact of reference point selection on DXA-based measurement of forearm bone mineral density



Few studies have systematically evaluated the technical aspects of forearm bone mineral density (BMD) measurement. We found that BMD remained stable regardless of the reference point; however, the ROI identified was not always consistent. Our study highlights the importance of using the same reference point for serial measurements of forearm BMD.


Forearm fractures are clinically important outcomes from the perspective of morbidity, health care costs, and interruption of work. BMD of the forearm, as derived by dual-energy x-ray absorptiometry (DXA), is a better predictor of fracture at the forearm compared with BMD measured at other sites. However, very few studies have evaluated the technical aspects of selecting the ROI for forearm BMD measurement. This study aimed to compare the BMD values measured at the 1/3 radius site using three different reference points: the ulnar styloid process, the radial endplate, and the bifurcation of the ulna and radius.


Healthy Chinese patients participating in the control group of an ongoing study at Zhejiang Provincial People’s Hospital were recruited for this study. For each patient, a DXA scan (GE Lunar Prodigy) of the forearm was performed and BMD values were separately calculated using each of the three reference points to identify the ROI. Pearson correlation coefficients were calculated to examine the correlation between the BMD measures derived from each reference point. The F test and independent t test were applied for more robust analysis of the differences in the variances and means.


Sixty-eight healthy Chinese volunteers agreed to participate in this study. The root mean square standard deviation (RMS-SD) percentages of BMD values measured at the 1/3 radius site were 2.19%, 2.23%, and 2.20% when using the ulnar styloid process, radial endplate, and the bifurcation of the ulna and radius as the reference points, respectively. Pearson’s correlation coefficients for all pairwise comparisons among these three groups were greater than 0.99. F tests and independent t tests showed p values ranging from 0.92 to 0.99. However, we observed that among 10% of patients, choosing an ROI at the ulnar styloid process led to an inability to accurately determine the BMD at the ultra-distal radius.


Given equal ability to determine BMD at the 1/3 radius accurately, the radial endplate or the bifurcation of the ulna and radius should be preferentially selected as the reference point for routine forearm BMD measurements in order to avoid situations in which the ultra-distal radius BMD cannot be determined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    WHO (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series 843 WHO, Geneva

  2. 2.

    Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91

    Article  Google Scholar 

  3. 3.

    O'Neill TW, Cooper C, Finn JD, Lunt M, Purdie D, Reid DM, Rowe R, Woolf AD, Wallace WA, Group UKCFS (2001) Incidence of distal forearm fracture in British men and women. Osteoporos Int 12(7):555–558

    CAS  Article  Google Scholar 

  4. 4.

    Thompson PW, Taylor J, Dawson A (2004) The annual incidence and seasonal variation of fractures of the distal radius in men and women over 25 years in Dorset, UK. Injury 35(5):462–466.

    Article  PubMed  Google Scholar 

  5. 5.

    Yu W, Gluer CC, Fuerst T, Grampp S, Li J, Lu Y, Genant HK (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57(3):169–174

    CAS  Article  Google Scholar 

  6. 6.

    Abrahamsen B, Jorgensen NR, Schwarz P (2015) Epidemiology of forearm fractures in adults in Denmark: national age- and gender-specific incidence rates, ratio of forearm to hip fractures, and extent of surgical fracture repair in inpatients and outpatients. Osteoporos Int 26(1):67–76.

    CAS  Article  Google Scholar 

  7. 7.

    Jerrhag D, Englund M, Karlsson MK, Rosengren BE (2017) Epidemiology and time trends of distal forearm fractures in adults - a study of 11.2 million person-years in Sweden. BMC Musculoskelet Disord 18(1):240.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Chen YT, Berger ML, Santora AC, Sherwood LM (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17(12):2222–2230

    Article  Google Scholar 

  9. 9.

    Greenspan S, Maitland-Ramsey L, Myers E (1996) Classification of osteoporosis in the elderly is dependent on site-specific analysis. Calcif Tissue Int 58:409–414

    CAS  Article  Google Scholar 

  10. 10.

    Saleem TF, Horwith M, Stack BC Jr (2004) Significance of primary hyperparathyroidism in the management of osteoporosis. Otolaryngol Clin N Am 37(4):751–761, viii-ix.

    Article  Google Scholar 

  11. 11.

    Macfarlane DP, Yu N, Leese GP (2015) Asymptomatic and mild primary hyperparathyroidism. Ann Endocrinol (Paris) 76(2):120–127.

    Article  Google Scholar 

  12. 12.

    Silverberg SJ, Gartenberg F, Jacobs TP, Shane E, Siris E, Staron RB, Bilezikian JP (1995) Longitudinal measurements of bone density and biochemical indices in untreated primary hyperparathyroidism. J Clin Endocrinol Metab 80(3):723–728.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD (2015) Executive summary of the 2015 ISCD Position Development Conference on Advanced Measures From DXA and QCT: Fracture Prediction Beyond BMD. J Clin Densitom 18(3):274–286

    Article  Google Scholar 

  14. 14.

    Wood K, Dhital S, Chen H, Sippel RS (2012) What is the utility of distal forearm DXA in primary hyperparathyroidism? Oncologist 17(3):322–325.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Silverberg SJ, Walker MD, Bilezikian JP (2013) Asymptomatic primary hyperparathyroidism. J Clin Densitom 16(1):14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Nakayama H, Toho H, Sone T (2018) Utility of radius bone densitometry for the treatment of osteoporosis with once-weekly teriparatide therapy. Osteoporos Sarcopenia 4(1):29–32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Urushibara N, Kato N, Adachi R, Nakamura Y, Mihara A, Uzawa T, Kitagawa S, Hayashi M, Kuroda T, Sone T (2014) Once-weekly teriparatide increases bone mineral density in the distal 1/10 radius, but not in the distal 1/3 radius. Springerplus 3:238.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Sugimoto T, Shiraki M, Fukunaga M, Hagino H, Sone T, Nakano T, Kishimoto H, Ito M, Yoshikawa H, Kishida M, Irie C, Nakamura T (2017) 24-month open-label teriparatide once-weekly efficacy research trial examining bone mineral density in subjects with primary osteoporosis and high fracture risk. Adv Ther 34(7):1727–1740.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    CAS  Article  Google Scholar 

  20. 20.

    Michalska D, Luchavova M, Zikan V, Raska I Jr, Kubena AA, Stepan JJ (2012) Effects of morning vs. evening teriparatide injection on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Osteoporos Int 23(12):2885–2891.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK (2011) Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int 22(1):357–362.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Nakamura T, Sugimoto T, Nakano T, Kishimoto H, Ito M, Fukunaga M, Hagino H, Sone T, Yoshikawa H, Nishizawa Y, Fujita T, Shiraki M (2012) Randomized Teriparatide [human parathyroid hormone (PTH) 1-34] Once-Weekly Efficacy Research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab 97(9):3097–3106.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zanchetta JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, Gaich GA, Dalsky GP, Myers SL (2003) Effects of teriparatide [recombinant human parathyroid hormone (1–34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Miner Res 18(3):539–543.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    McClung MR, San Martin J, Miller PD, Civitelli R, Bandeira F, Omizo M, Donley DW, Dalsky GP, Eriksen EF (2005) Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med 165(15):1762–1768.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zhao J, Xing Y, Zhou Q, Jin W, Wacker W, Barden HS (2010) Can forearm bone mineral density be measured with DXA in the supine position? A study in Chinese population. J Clin Densitom 13(2):147–150.

    Article  PubMed  Google Scholar 

  26. 26.

    Hongsdusit N, von Muhlen D, Barrett-Connor E (2006) A comparison between peripheral BMD and central BMD measurements in the prediction of spine fractures in men. Osteoporos Int 17(6):872–877.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Orlic L, Crncevic Z, Pavlovic D, Zaputovic L (2010) Bone mineral densitometry in patients on hemodialysis: difference between genders and what to measure. Ren Fail 32(3):300–308.

    Article  PubMed  Google Scholar 

  28. 28.

    Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, Stampa B, Timm W, Genant HK (2009) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45(1):110–118.

    Article  PubMed  Google Scholar 

  29. 29.

    El Hage R, El Hage Z, Jacob C, Moussa E, Theunynck D, Baddoura R (2011) Bone mineral content and density in overweight and control adolescent boys. J Clin Densitom 14(2):122–128.

    Article  PubMed  Google Scholar 

  30. 30.

    Bonnick SL (2004) Bone densitiometry in clinical practice. Densitiometry techniques, 2nd edn. Humana Press, Totowa

    Google Scholar 

  31. 31.

    Augat P, Fuerst T, Genant HK (1998) Quantitative bone mineral assessment at the forearm: a review. Osteoporos Int 8(4):299–310

    CAS  Article  Google Scholar 

  32. 32.

    Rosen EO, McNamara EA, Whittaker LG, Malabanan AO, Rosen HN (2018) Effect of positioning of the ROI on BMD of the forearm and its subregions. J Clin Densitom 21(4):529–533.

    Article  PubMed  Google Scholar 

  33. 33.

    Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270

    CAS  Article  Google Scholar 

  34. 34.

    Pearson D, Horton B, Green DJ (2007) Cross calibration of Hologic QDR2000 and GE Lunar Prodigy for forearm bone mineral density measurements. J Clin Densitom 10(3):306–311.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Chang YJ, Yu W, Lin Q, Yao JP, Zhou XH, Tian JP (2012) Forearm bone mineral density measurement with different scanning positions: a study in right-handed Chinese using dual-energy X-ray absorptiometry. J Clin Densitom 15(1):67–71.

    Article  PubMed  Google Scholar 

  36. 36.

    Wahner HW, Eastell R, Riggs BL (1985) Bone mineral density of the radius: where do we stand? J Nucl Med 26(11):1339–1341

    CAS  PubMed  Google Scholar 

Download references


We would like to express our sincere gratitude to Professor Harry K. Genant for his scientific advice and suggestions. Dr. Hsieh is supported by NIH/Fogarty International Center K01TW009995.

Author information



Corresponding author

Correspondence to Wei Yu.

Ethics declarations

Conflicts of interest


Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 68 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Ying, Q., Guan, W. et al. Impact of reference point selection on DXA-based measurement of forearm bone mineral density. Arch Osteoporos 14, 107 (2019).

Download citation


  • Forearm
  • Dual-energy X-ray absorptiometry
  • Bone mineral density
  • Regions of interest
  • Precision
  • One-third radius