Interaction of body fat percentage and height with appendicular functional muscle-bone unit

Abstract

Summary

The interaction of body fat percentage and height with appendicular BMC for LBM was analyzed. Only body fat had significant negative correlation with the appendicular BMC for LBM.

Purpose/introduction

For the clinical evaluation of the functional muscle-bone unit, it was proposed to evaluate the adaptation of the bone to the acting forces. A frequently used parameter for this is the total body less head bone mineral content (TBLH-BMC) determined by dual-energy X-ray absorptiometry (DXA) in relation to the total body lean body mass (LBM). Body fat percentage seemed to correlate negatively and height positively with TBLH-BMC for LBM. It was supposed that appendicular BMC for LBM is a more accurate surrogate for the functional muscle-bone unit since appendicular LBM does not incorporate the mass of internal organs. The aim of this study was to analyze the interaction of body fat percentage and height with appendicular BMC for LBM.

Methods

As part of the National Health and Nutrition Examination Survey (NHANES) study, between the years 1999 and 2004, whole-body DXA scans on randomly selected Americans from 8 years of age were carried out. From all eligible DXA scans, three major US ethnic groups were evaluated (non-Hispanic Whites, non-Hispanic Blacks, and Mexican Americans) for further statistical analysis.

Results

For the statistical analysis, the DXA scans of 8190 non-Hispanic White children and adults (3903 female), of 4931 non-Hispanic Black children and adults (2250 female), and 5421 of Mexican American children and adults (2424 female) were eligible. Only body fat had a significant negative correlation with the appendicular BMC for LBM.

Conclusions

Only body fat had significant negative correlation with appendicular BMC for LBM, and thus, should be addressed when evaluating functional muscle-bone unit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BMC:

Bone mineral content

CDC:

Centers for Disease Control and Prevention

DXA:

Dual-energy X-ray absorptiometry

fMBU:

Functional muscle-bone unit

LBM:

Lean body mass

LOESS:

Locally weighted scatterplot smoothing

NHANES:

National Health and Nutrition Examination Survey

TBLH:

Total body less head

References

  1. 1.

    Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER (2015) Role of IGF-I signaling in muscle bone interactions. Bone 80:79–88. https://doi.org/10.1016/j.bone.2015.04.036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Carson JA, Manolagas SC (2015) Effects of sex steroids on bones and muscles: similarities, parallels, and putative interactions in health and disease. Bone 80:67–78. https://doi.org/10.1016/j.bone.2015.04.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Sartori R, Sandri M (2015) BMPs and the muscle-bone connection. Bone 80:37–42. https://doi.org/10.1016/j.bone.2015.05.023

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Houweling P, Kulkarni RN, Baldock PA (2015) Neuronal control of bone and muscle. Bone 80:95–100. https://doi.org/10.1016/j.bone.2015.05.006

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Wolff J (2010) Das Gesetz der transformation der Knochen, 1. Aufl. Pro Business, Berlin

    Google Scholar 

  6. 6.

    Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101. https://doi.org/10.1002/ar.a.10119

    Article  PubMed  Google Scholar 

  7. 7.

    Schönau E, Werhahn E, Schiedermaier U et al (1996) Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 45(Suppl 1):63–66

    PubMed  Google Scholar 

  8. 8.

    Goodman CA, Hornberger TA, Robling AG (2015) Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone 80:24–36. https://doi.org/10.1016/j.bone.2015.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Crabtree NJ, Högler W, Cooper MS, Shaw NJ (2013) Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int 24(7):2015–2024. https://doi.org/10.1007/s00198-012-2263-8

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN Jr (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52(2):214–218

    CAS  Article  Google Scholar 

  11. 11.

    Duran I, Martakis K, Hamacher S, Stark C, Semler O, Schoenau E (2018) Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults? Osteoporos Int 29(5):1069–1079. https://doi.org/10.1007/s00198-018-4401-4

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76(2):378–383. https://doi.org/10.1093/ajcn/76.2.378

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763

    CAS  Article  Google Scholar 

  14. 14.

    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schoenau E, Neu CM, Beck B, Manz F, Rauch F (2002) Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17(6):1095–1101. https://doi.org/10.1359/jbmr.2002.17.6.1095

    Article  PubMed  Google Scholar 

  16. 16.

    Ashby RL, Adams JE, Roberts SA, Mughal MZ, Ward KA (2011) The muscle-bone unit of peripheral and central skeletal sites in children and young adults. Osteoporos Int 22(1):121–132. https://doi.org/10.1007/s00198-010-1216-3

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Choukair D, Kneppo C, Feneberg R, Schönau E, Lindner M, Kölker S, Hoffmann GF, Tönshoff B (2017) Analysis of the functional muscle-bone unit of the forearm in patients with phenylketonuria by peripheral quantitative computed tomography. J Inherit Metab Dis 40(2):219–226. https://doi.org/10.1007/s10545-016-0002-6

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    CDC National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/about_nhanes.htm. Accessed 30 Jan 2019

  19. 19.

    Curtin LR, Mohadjer LK, Dohrmann SM et al (2012) The National Health and Nutrition examination survey: sample design, 1999-2006. Vital Health Stat 2(155):1–39

    Google Scholar 

  20. 20.

    Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, el-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom 17(2):225–242. https://doi.org/10.1016/j.jocd.2014.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Schoeller DA, Tylavsky FA, Baer DJ, Chumlea WC, Earthman CP, Fuerst T, Harris TB, Heymsfield SB, Horlick M, Lohman TG, Lukaski HC, Shepherd J, Siervogel RM, Borrud LG (2005) QDR 4500A dual-energy X-ray absorptiometer underestimates fat mass in comparison with criterion methods in adults. Am J Clin Nutr 81(5):1018–1025

    CAS  Article  Google Scholar 

  22. 22.

    Kuczmarski RJ (2002) 2000 CDC growth charts for the United States: methods and development. Vital and health statistics. Series 11, data from the National Health Survey, no. 246. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, Md

  23. 23.

    Cole TJ, Green PJ (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 11(10):1305–1319

    CAS  Article  Google Scholar 

  24. 24.

    Royston P, Wright EM (2000) Goodness-of-fit statistics for age-specific reference intervals. Stat Med 19(21):2943–2962. https://doi.org/10.1002/1097-0258(20001115)19:21<2943:AID-SIM559>3.0.CO;2-5

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    van Buuren S, Fredriks M (2001) Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med 20(8):1259–1277. https://doi.org/10.1002/sim.746

    Article  PubMed  Google Scholar 

  26. 26.

    Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape (with discussion). J Royal Statistical Soc C 54(3):507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

    Article  Google Scholar 

  27. 27.

    Ferretti JL, Capozza RF, Cointry GR, García SL, Plotkin H, Alvarez Filgueira ML, Zanchetta JR (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22(6):683–690. https://doi.org/10.1016/S8756-3282(98)00046-5

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Cure-Cure C, Capozza RF, Cointry GR, Meta M, Cure-Ramírez P, Ferretti JL (2005) Reference charts for the relationships between dual-energy X-ray absorptiometry-assessed bone mineral content and lean mass in 3,063 healthy men and premenopausal and postmenopausal women. Osteoporos Int 16(12):2095–2106. https://doi.org/10.1007/s00198-005-2007-0

    Article  PubMed  Google Scholar 

  29. 29.

    Capozza RF, Cointry GR, Cure-Ramírez P et al (2004) A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women. Bone 35(1):283–295. https://doi.org/10.1016/j.bone.2004.03.010

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Schiessl H, Frost HM, Jee WSS (1998) Estrogen and bone-muscle strength and mass relationships. Bone 22(1):1–6. https://doi.org/10.1016/S8756-3282(97)00223-8

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Galea GL, Price JS, Lanyon LE (2013) Estrogen receptors’ roles in the control of mechanically adaptive bone (re)modeling. Bonekey Rep 2:413. https://doi.org/10.1038/bonekey.2013.147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Mueller SM, Herter-Aeberli I, Cepeda-Lopez AC, Flück M, Jung HH, Toigo M (2017) The effect of body composition and serum inflammatory markers on the functional muscle-bone unit in premenopausal women. Int J Obes 41(8):1203–1206. https://doi.org/10.1038/ijo.2017.100

    CAS  Article  Google Scholar 

  33. 33.

    Kawai M, de Paula FJA, Rosen CJ (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272(4):317–329. https://doi.org/10.1111/j.1365-2796.2012.02564.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19(5):595–606. https://doi.org/10.1007/s00198-007-0492-z

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hetherington-Rauth M, Bea JW, Blew RM, Funk JL, Hingle MD, Lee VR, Roe DJ, Wheeler MD, Lohman TG, Going SB (2018) Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls. Bone 113:144–150. https://doi.org/10.1016/j.bone.2018.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Gibbs JC, Giangregorio LM, Wong AKO, Josse RG, Cheung AM (2017) Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older. Bone 103:47–54. https://doi.org/10.1016/j.bone.2017.06.006

    Article  PubMed  Google Scholar 

  37. 37.

    Aloia JF, Vaswani A, Ma R, Flaster E (1995) To what extent is bone mass determined by fat-free or fat mass? Am J Clin Nutr 61(5):1110–1114

    CAS  Article  Google Scholar 

  38. 38.

    Ho-Pham LT, Nguyen UDT, Nguyen TV (2014) Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab 99(1):30–38. https://doi.org/10.1210/jc.2014-v99i12-30A

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Winther A, Jørgensen L, Ahmed LA, Christoffersen T, Furberg AS, Grimnes G, Jorde R, Nilsen OA, Dennison E, Emaus N (2018) Bone mineral density at the hip and its relation to fat mass and lean mass in adolescents: the Tromsø Study, Fit Futures. BMC Musculoskelet Disord 19(1):21. https://doi.org/10.1186/s12891-018-1933-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hannam K, Deere KC, Hartley A, al-Sari UA, Clark EM, Fraser WD, Tobias JH (2016) Habitual levels of higher, but not medium or low, impact physical activity are positively related to lower limb bone strength in older women: findings from a population-based study using accelerometers to classify impact magnitude. Osteoporos Int 28:2813–2822. https://doi.org/10.1007/s00198-016-3863-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Bjørnerem Å, Bui QM, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E (2013) Fracture risk and height: an association partly accounted for by cortical porosity of relatively thinner cortices. J Bone Miner Res 28(9):2017–2026. https://doi.org/10.1002/jbmr.1934

    Article  PubMed  Google Scholar 

  42. 42.

    Heaney RP (1995) Bone mass, the mechanostat, and ethnic differences. J Clin Endocrinol Metab 80(8):2289–2290. https://doi.org/10.1210/jcem.80.8.7629221

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Fricke O, Schoenau E (2007) The ‘Functional muscle-bone Unit’: probing the relevance of mechanical signals for bone development in children and adolescents. Growth Hormon IGF Res 17(1):1–9. https://doi.org/10.1016/j.ghir.2006.10.004

    Article  Google Scholar 

  44. 44.

    Duran I, Schütz F, Hamacher S, Semler O, Stark C, Schulze J, Rittweger J, Schoenau E (2017) The functional muscle-bone unit in children with cerebral palsy. Osteoporos Int 28(7):2081–2093. https://doi.org/10.1007/s00198-017-4023-2

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Shepherd JA, Lu Y, Wilson K, Fuerst T, Genant H, Hangartner TN, Wilson C, Hans D, Leib ES, International Society for Clinical Densitometry Committee on Standards of Bone Measurement (2006) Cross-calibration and minimum precision standards for dual-energy X-ray absorptiometry: the 2005 ISCD official positions. J Clin Densitom 9(1):31–36. https://doi.org/10.1016/j.jocd.2006.05.005

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Duran.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

eFigure 1
figure6

Ethnicity effect on appendicular functional muscle-bone unit. Lines indicate 3rd, 50th and 97th centiles of the age-related distribution of app. BMC for LBM. The three analyzed ethnic groups are shown (PNG 328 kb)

eFigure 2
figure7

Body fat effect on appendicular functional muscle-bone unit in non-Hispanic Black NHANES population. Each dot indicates a single proband. The LOESS regression curve is depicted. Data from the non-Hispanic Black NHANES population (1999–2004) are shown. LOESS locally weighted scatterplot smoothing (PNG 306 kb)

eFigure 3
figure8

Body height effect on appendicular functional muscle-bone unit in non-Hispanic Black NHANES population. Each dot indicates a single proband. The LOESS regression curve is depicted. Data from the non-Hispanic Black NHANES population (1999–2004) are shown. LOESS locally weighted scatterplot smoothing (PNG 333 kb)

eFigure 4
figure9

Body fat effect on appendicular functional muscle-bone unit in Mexican American NHANES population. Each dot indicates a single proband. The LOESS regression curve is depicted. Data from the Mexican American NHANES population (1999–2004) are shown. LOESS locally weighted scatterplot smoothing (PNG 317 kb)

eFigure 5
figure10

Bodyheight effect on appendicular functional muscle-bone unit Mexican American NHANES population. Each dot indicates a single proband. The LOESS regression curve is depicted. Data from the Mexican American NHANES population (1999–2004) are shown. LOESS locally weighted scatterplot smoothing (PNG 345 kb)

High-Resolution Image (TIFF 429 kb)

High-Resolution Image (TIFF 710 kb)

High-Resolution Image (TIFF 721 kb)

High-Resolution Image (TIFF 723 kb)

High-Resolution Image (TIFF 733 kb)

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duran, I., Martakis, K., Bossier, C. et al. Interaction of body fat percentage and height with appendicular functional muscle-bone unit. Arch Osteoporos 14, 65 (2019). https://doi.org/10.1007/s11657-019-0610-5

Download citation

Keywords

  • Appendicular functional muscle-bone unit
  • Bone mineral content
  • Body fat percentage
  • Mechanostat
  • Children
  • Adults