Advertisement

LO SCALPELLO-OTODI Educational

, Volume 32, Issue 1, pp 10–13 | Cite as

Inquadramento del paziente fragile: dalla scienza di base alla clinica

  • Umberto Tarantino
  • Maurizio Feola
  • Manuel Scimeca
Aggiornamenti
  • 51 Downloads

Management of the frail patient: from bench to bedside

Abstract

The ageing of the population leads to an increase in the incidence of chronic-degenerative diseases such as osteoporosis. It causes macro- and microarchitectural alterations with a consequent risk of falling and fracture. The progressive subversion of the muscular structure typical of osteoporosis-related sarcopoenia contributes to the “frailty syndrome” that often affects elderly patients.

Notes

Conflitto di interesse

Gli autori Umberto Tarantino, Maurizio Feola e Manuel Scimeca dichiarano di non aver alcun conflitto di interesse.

Consenso informato e conformità agli standard etici

Tutte le procedure descritte nello studio e che hanno coinvolto esseri umani sono state attuate in conformità alle norme etiche stabilite dalla dichiarazione di Helsinki del 1975 e successive modifiche. Il consenso informato è stato ottenuto da tutti i pazienti inclusi nello studio.

Human and animal rights

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.

Bibliografia

  1. 1.
    Dati ISTAT 2016 Google Scholar
  2. 2.
    Clegg A, Young J, Iliffe S et al. (2013) Frailty in elderly people. Lancet 381(9868):752–762 CrossRefPubMedGoogle Scholar
  3. 3.
    Ministero della salute—Direzione generale del sistema informativo—Coordinamento e sviluppo NSIS Google Scholar
  4. 4.
    Tarantino U, Capone A, Planta M et al. (2010) The incidence of hip, forearm, humeral, ankle, and vertebral fragility fractures in Italy: results from a 3-year multicenter study. Arthritis Res Ther 12(6):R226 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hansen L, Petersen KD, Eriksen SA et al. (2015) Subsequent fracture rates in a nationwide population-based cohort study with a 10-year perspective. Osteoporos Int 26(2):513–519 CrossRefPubMedGoogle Scholar
  6. 6.
    Bischoff-Ferrari HA, Borchers M, Gudat F et al. (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19(2):265–269 CrossRefPubMedGoogle Scholar
  7. 7.
    Scimeca M, Centofanti F, Celi M et al (2018) Vitamin D receptor in muscle atrophy of elderly patients: a key element of osteoporosis-sarcopenia connection. Aging Dis (in press) Google Scholar
  8. 8.
    Savanelli MC, Barrea L, Macchia PE et al. (2017) Preliminary results demonstrating the impact of Mediterranean diet on bone health. J Transl Med 15(1):81 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Scimeca M, Feola M, Romano L et al. (2017) Heavy metals accumulation affects bone microarchitecture in osteoporotic patients. Environ Toxicol 32(4):1333–1342 CrossRefPubMedGoogle Scholar
  10. 10.
    Tarantino U, Baldi J, Scimeca M et al. (2016) The role of sarcopenia with and without fracture. Injury 47(Suppl 4):S3–S10 CrossRefPubMedGoogle Scholar
  11. 11.
    Di Pietro G, Capuani S, Manenti G et al. (2016) Bone marrow lipid profiles from peripheral skeleton as potential biomarkers for osteoporosis: a 1H-MR spectroscopy study. Acad Radiol 23(3):273–283 CrossRefPubMedGoogle Scholar
  12. 12.
    Tarantino U, Scimeca M, Piccirilli E et al. (2015) Sarcopenia: a histological and immunohistochemical study on age-related muscle impairment. Aging Clin Exp Res 27(Suppl 1):S51–S60 CrossRefPubMedGoogle Scholar
  13. 13.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al. (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang S, Nguyen ND, Center JR et al. (2014) Association between hypertension and fragility fracture: a longitudinal study. Osteoporos Int 25(1):97–103 CrossRefPubMedGoogle Scholar
  15. 15.
    Larsson T, Nisbeth U, Ljunggren O et al. (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64(6):2272–2279 CrossRefPubMedGoogle Scholar
  16. 16.
    Leslie WD, Rubin MR, Schwartz AV, Kanis JA (2012) Type 2 diabetes and bone. J Bone Miner Res 27(11):2231–2237 CrossRefPubMedGoogle Scholar
  17. 17.
    Rubin MR (2017) Skeletal fragility in diabetes. Ann NY Acad Sci 1402(1):18–30 CrossRefPubMedGoogle Scholar
  18. 18.
    Seeman E (2013) Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci 68(10):1218–1225 CrossRefPubMedGoogle Scholar
  19. 19.
    Tarantino U, Piccirilli E, Fantini M et al. (2015) Sarcopenia and fragility fractures: molecular and clinical evidence of the bone-muscle interaction. J Bone Jt Surg Am 97(5):429–437 CrossRefGoogle Scholar
  20. 20.
    Colaianni G, Mongelli T, Cuscito C et al. (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7(1):2811 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tarantino U, Iolascon G, Cianferotti L et al. (2017) Clinical guidelines for the prevention and treatment of osteoporosis: summary statements and recommendations from the Italian Society for Orthopaedics and Traumatology. J Orthop Traumatol 18(Suppl 1):3–36 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Società Italiana Ortopedici Traumatologi Ospedalieri d’Italia 2018

Authors and Affiliations

  • Umberto Tarantino
    • 1
  • Maurizio Feola
    • 1
  • Manuel Scimeca
    • 1
  1. 1.Università degli Studi di Roma Tor VergataRomaItalia

Personalised recommendations