, Volume 30, Issue 2, pp 104–114 | Cite as

Utilizzo di un nanocomposto costituito da Mg-idrossiapatite e matrice ossea demineralizzata nelle osteotomie tibiali: studio prospettico randomizzato

  • D. Dallari
  • G. Sabbioni
  • A. Mazzotta
  • M. Rocchi
  • N. Del Piccolo
  • M. Filanti
  • C. Stagni

Use of Mg-hydroxyapatite matrix and demineralized bone matrix in tibial osteotomy: a randomized prospective study


The autologous bone substitutes are the gold standard of orthopedic surgery for the treatment of severe losses of substance. Nevertheless there are different issues, from co-morbidity of the donor site, the limited quantity and poor osteogenic properties. To overcome these limits the bank of the skeletal muscle tissue of the Rizzoli Institutes in cooperation with FIN-ceramic Faenza SpA have developed DBSint: a new synthetic bone composite, equipped with biomimetic and osteoinductive properties, consisting of demineralized bone matrix conveyed by nanostructured hydroxyapatite enriched with magnesium. The DBSint has recently been evaluated with a clinical preliminary study with the purpose to analyze the ability to form new bone tissue and the time necessary to determine bone repair. We enrolled 36 patients with indication to perform a valgus osteotomy of the tibia, divided into 3 groups, respectively, treated with nano hydroxyapatite structured in the form of paste (SINTlife) currently on the market, the cortico-cancellous bone chips provided by the BTM-IOR, and finally DBSint. There were no adverse effects, we performed biopsies and histological exam, and radiographic assessment, respectively, at 40 days and 6 months after treatment, showing that the DBSint is able to promote a fast bone regeneration, higher than in the two groups treated with Sintlife and homologous bone.


Conflitto di interesse

Gli autori D. Dallari, G. Sabbioni, A. Mazzotta, M. Rocchi, N. Del Piccolo, M. Filanti e C. Stagni dichiarano di non avere alcun conflitto di interesse.

Consenso informato e conformità agli standard etici

Tutte le procedure descritte nello studio e che hanno coinvolto esseri umani sono state attuate in conformità alle norme etiche stabilite dalla dichiarazione di Helsinki del 1975 e successive modifiche. Il consenso informato è stato ottenuto da tutti i pazienti inclusi nello studio.


  1. 1.
    Triffit JT (1996) The stem cell of the osteoblast. In: Bilizekian J, Raisz L, Rodou G (eds) Principles of bone biology. Academic, San Diego, pp 39–50 Google Scholar
  2. 2.
    Lieberman JR, Daluiski A, Einhorn TA (2002) The role of grow factors in the repair of bone: biology and clinical applications. J Bone Jt Surg, Am Vol 84:1032–1044 CrossRefGoogle Scholar
  3. 3.
    Finkemeier CG (2002) Current concepts review bone-grafting and bone-graft substitutes. J Bone Jt Surg 84-A(3):454–464 CrossRefGoogle Scholar
  4. 4.
    Mahli A, Coskun D, Altun NS et al. (2002) Alcohol neurolysis for persistent pain caused by superior cluneal nerves injury after iliac crest bone graft harvesting in orthopedic surgery: report of four cases and review of the literature. Spine 27(22):E478–481 CrossRefPubMedGoogle Scholar
  5. 5.
    Cricchio G, Lundgren S (2003) Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clin Implant Dent Relat Res 5(3):161–169 CrossRefPubMedGoogle Scholar
  6. 6.
    Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27 CrossRefGoogle Scholar
  7. 7.
    De Long WG, Einhorn TA, Koval K et al. (2007) Bone grafts and bone graft substitutes in orthopedic trauma surgery. A critical analysis. J Bone Jt Surg, Am Vol 89:649–658 CrossRefGoogle Scholar
  8. 8.
    Le Geros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98 CrossRefGoogle Scholar
  9. 9.
    Yamasakia Y, Yoshidab Y, Okazaki M et al. (2003) Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials 24(27):4913–4920 CrossRefGoogle Scholar
  10. 10.
    Rude RK, Olerich M (1996) Magnesium deficiency: possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos Int 6:453–461 CrossRefPubMedGoogle Scholar
  11. 11.
    Weidow J, Cederlund CG, Ranstam J, Kärrholm J (2006) Ahlbäck grading of osteoarthritis of the knee: poor reproducibility and validity based on visual inspection of the joint. Acta Orthop 77(2):262–266 CrossRefPubMedGoogle Scholar
  12. 12.
    Schiphof D, Boers M, Bierna-Zeinstra SM (2008) Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 67:1034–1036 CrossRefPubMedGoogle Scholar
  13. 13.
    Kellgren JH, Lawrence JS (1957) Radiological assessments of osteoarthrosis. Ann Rheum Dis 16:494–502 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Thorwarth M, Schulze-Mosgau S, Kessler P (2005) Bone regeneration in osseus defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 63:1626–1633 CrossRefPubMedGoogle Scholar
  15. 15.
    Swetha M, Sahithi K, Moorthi A (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4 CrossRefPubMedGoogle Scholar
  16. 16.
    Venugopal J, Zhang Y, Low S (2010) Biomimetic hydroxyapatite containing composite nanofibrous substrates for bone tissue engineering. Philos Trans R Soc A 368:2065–2081 CrossRefGoogle Scholar
  17. 17.
    Sealy MP, Guo YB (2010) Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. J Mech Behav Biomed 3:488–496 CrossRefGoogle Scholar
  18. 18.
    Landi E, Logroscino G, Proietti L (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behavior. J Mater Sci, Mater Med 19:239–247 CrossRefGoogle Scholar
  19. 19.
    Gibson IR, Bonfield W (2002) Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci, Mater Med 13:685–693 CrossRefGoogle Scholar
  20. 20.
    Saito N, Takaoka K (2003) New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials 24:2287–2293 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee SC, Kwang AJ (2010) The short term follow up results of open wedge high tibial osteotomy with using an Aescula open wedge plate and allogenic bone graft: the minimum 1 year follow up results. Clin Orthop Surg 2:47–54 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dallari D, Giannini S, Ferruzzi A et al. (2008) DBSint®, la nuova frontiera della rigenerazione ossea bio-mimetica. Sphera 8:34–38 Google Scholar
  23. 23.
    Dallari D, Savarino L, Dallari D et al. (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Jt Surg, Am Vol 89(11):2413–2420 Google Scholar
  24. 24.
    Dijkman BG, Sprague S, Schemitsch E (2010) When is a fracture healed? Radiographic and clinical criteria revisited. J Orthop Trauma 24(3):S76–S80 CrossRefPubMedGoogle Scholar
  25. 25.
    Webster TJ, Ergun C, Doremus RH et al. (2000) Enhanced functions of osteoblast on nanophase ceramics. Biomaterials 21:1803–1810 CrossRefPubMedGoogle Scholar
  26. 26.
    Hernigou P, Roussignol X, Flouzat CH (2010) Opening wedge osteotomy for large varus deformity with CeraverTM resorbable beta tricalcium phosphate wedges. Int Orthop 34:191–199 CrossRefPubMedGoogle Scholar
  27. 27.
    Rothamel D, Schwarz F, Herten M et al. (2008) Dimensional ridge alterations following socket preservation using a nanocrystalline hydroxyapatite paste. A histomorphometrical study in dogs. Int J Oral Maxillofac Surg 37:741–747 CrossRefPubMedGoogle Scholar
  28. 28.
    Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P (2006) The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 27:1110–1118 CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana Ortopedici Traumatologi Ospedalieri d’Italia 2016

Authors and Affiliations

  • D. Dallari
    • 1
  • G. Sabbioni
    • 1
  • A. Mazzotta
    • 1
  • M. Rocchi
    • 1
  • N. Del Piccolo
    • 1
  • M. Filanti
    • 1
  • C. Stagni
    • 1
  1. 1.Istituto Ortopedico RizzoliBolognaItalia

Personalised recommendations