, Volume 30, Issue 1, pp 2–10 | Cite as

Epidemiologia, classificazione, timing


Epidemiology, classification, timing


The severity of an open fracture has been well understood for a long time. The frequency of open fractures observed in any area varies according to geographical and socioeconomic factors, population size, and trauma delivery systems. The classification of open fractures as described by Gustilo and Anderson and later modified by Gustilo, Mendoza and Williams is the most frequently quoted system in contemporary literature and it is widely used. Oestern and Tscherne suggested a classification based on soft-tissue damage and on the extent of muscle contusion rather than on the size of skin wound. The most recent classification system is that of the AO group. This very detailed classification is designed to be used in conjunction with the Müller AO Classification of fractures—long bones. The treatment of open fractures aims to preserve life, limb and joint function, in that order of priority. The intermediate objectives are: prevention of infection, fracture stabilisation, soft-tissue coverage. As these goals are interdependent, a coordinated treatment plan with early surgical intervention is required.


Conflitto di interesse

Gli autori A. Pellegrino, M. Longo e L. Romano dichiarano di non aver alcun conflitto d’interesse.

Consenso informato e conformità agli standard etici

Tutte le procedure descritte nello studio e che hanno coinvolto essere umani sono state attuate in conformità alle norme etiche stabilite dalla dichiarazione di Helsinki del 1975 e successive modifiche. Il consenso informato è stato ottenuto da tutti i pazienti inclusi nello studio.

Human and Animal Rights

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.


  1. 1.
    Lloyd GE (1978) Hippocratic writing. Pelican Books, New York, pp 277–314 Google Scholar
  2. 2.
    Parè A (1634) The works of that famous chirurgion. Ambrose Parey. Translated by Thomas Johnson, London Google Scholar
  3. 3.
    Malgaigne JF (1842) Etude statistique sur les résultats des grandes opérations dans les hopitaux de Paris. Arch Gén De Méd 13:389–418 Google Scholar
  4. 4.
    de Chauliac G (1546) Ars chirurgica, Juntas, Venezia Google Scholar
  5. 5.
    Wangensteen OH, Wangensteen SD, Reyher C (1973) His demonstration of the role of debridement in gunshot wounds and fractures. Surgery 74:641–649 PubMedGoogle Scholar
  6. 6.
    Wangensteen OH, Wangensteen SD (1978) Rise of surgery from empiric craft to scientific discipline. Univ of Minnesota Press, Minneapolis, pp 3–64, 301–325 Google Scholar
  7. 7.
    Inter-Allied Surgical Conference (1917) General principles guiding the treatment of wounds of war. Conclusions adopted by the Inter-Allied Surgical Conference held in Paris. H.M. Stationery Office, London Google Scholar
  8. 8.
    Court-Brown CM, Brewster N (1996) Epidemiology of open fractures. In: Court-Brown CM, McQueen MM, Quaba AA (eds) Management of open fractures. Dunitz, London, pp 25–35 Google Scholar
  9. 9.
    Court-Brown CM, Rimmer S, Prakash U, McQueen MM (1998) The epidemiology of open long bone fractures. Injury 29(7):529–534 CrossRefPubMedGoogle Scholar
  10. 10.
    Court-Brown CM, Bugler KE, Clement ND et al. (2012) The epidemiology of open fractures in adults. A 15-year review. Injury 43(6):891–897 CrossRefPubMedGoogle Scholar
  11. 11.
    Chung KC, Spilson SV (2001) The frequency and epidemiology of hand and forearm fractures in the United States. J Hand Surg Am 26(5):908–915 CrossRefPubMedGoogle Scholar
  12. 12.
    Cauchoix J, Duparc J, Buolez P (1957) Traitement des fractures ouvertes de jambe. Med Acta Chir 83:811–822 Google Scholar
  13. 13.
    Ellis H (1958) The speed of healing fractures of the tibial shaft. J Bone Jt Surg Br 40:42–46 Google Scholar
  14. 14.
    Nicoll EA (1964) Fractures of the tibial shaft. A survey of 705 cases. J Bone Jt Surg Br 46:373–387 CrossRefGoogle Scholar
  15. 15.
    Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Jt Surg Am 58:453–458 CrossRefGoogle Scholar
  16. 16.
    Gustilo RB, Mendoza RM, Williams DN (1984) Problems in the management of type (severe) open fractures: a new classification of type III open fractures. J Trauma 24:742–746 CrossRefPubMedGoogle Scholar
  17. 17.
    Tscherne H, Oestern HJ (1982) A new classification of soft-tissue damage in open and closed fractures. Unfallheilkunde 85:111–115 PubMedGoogle Scholar
  18. 18.
    Sudkamp N, Haas NP, Flory PJ et al. (1989) Criteria for amputations, reconstruction and explantation of extremities in multiple trauma patients. Chirurg 60(11):774–781 PubMedGoogle Scholar
  19. 19.
    Südkamp N, Haas N, Tscherne H et al. (2001) Criteria for amputation, reconstruction and replantation of extremities in multiple trauma patients. Chirurg 72:312–318 CrossRefGoogle Scholar
  20. 20.
    Orthopedic Trauma Association: Open Fracture Study Group (2010) A new classification scheme for open fractures. J Orthop Trauma 24(8):457–463 Google Scholar
  21. 21.
    Muller ME, Nazarian S, Koch P (1990) The comprehensive classification of fractures of long bones. Springer, Berlin CrossRefGoogle Scholar
  22. 22.
    Muller ME, Allgower M, Schneider R, Willenegger H (1991) Manual of internal fixation, 3rd edn. Springer, Berlin CrossRefGoogle Scholar
  23. 23.
    Pollak AN (2006) Timing of debridement of open fractures. J Am Acad Orthop Surg 14(10):S48–51 CrossRefPubMedGoogle Scholar
  24. 24.
    Bowen TR, Widmaier JC (2005) Host classification predicts infection after open fracture. Clin Orthop Relat Res 433:205–211 CrossRefGoogle Scholar
  25. 25.
    Patzakis MJ, Wilkins J (1989) Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res 243:36–40 Google Scholar
  26. 26.
    Dellinger EP, Caplan ES, Weaver LD et al. (1988) Duration of preventive antibiotic administration for open extremity fractures. Arch Surg 123(3):333–339 CrossRefPubMedGoogle Scholar
  27. 27.
    Almeida Matos M, Castro-Filho RN, Pinto da Silva BV (2013) Risk factors associated with infection in tibial open fractures. Rev Fac Cienc Méd 70(1):14–18 Google Scholar
  28. 28.
    Khatod M, Botte MJ, Hoyt DB et al. (2003) Outcomes in open tibia fractures: relationship between delay in treatment and infection. J Trauma 55(5):949–954 CrossRefPubMedGoogle Scholar
  29. 29.
    Schenker ML, Yannascoli S, Baldwin KD, Ahn J, Mehta S (2012) Does timing to operative debridement affect infectious complications in open long-bone fractures? A systematic review. J Bone Jt Surg Am 94(12):1057–1064 CrossRefGoogle Scholar
  30. 30.
    Pollak AN, Castillo RC, Jones AL et al (2014) Time to definitive treatment significantly influences incidence of infection after open high-energy lower-extremity trauma. OTA Meeting Abstract LEAP Study Google Scholar
  31. 31.
    Pollak AN, Jones AL, Castillo RC et al. (for the LEAP Study Group) (2010) The relationship between time to surgical debridement and incidence of infection after open high-energy lower extremity trauma. J Bone Jt Surg 92(1):7–15 CrossRefGoogle Scholar
  32. 32.
    Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Jt Surg Am 58(4):453–458 CrossRefGoogle Scholar
  33. 33.
    Patzakis MJ, Harvey JP, Ivler D (1974) The role of antibiotics in the management of open fractures. J Bone Jt Surg Am 56(3):532–541 CrossRefGoogle Scholar
  34. 34.
    Chapman MW, Mahoney M (1979) The role of early internal fixation in the management of open fractures. Clin Orthop Relat Res 138:120–131 Google Scholar
  35. 35.
    Crowley DJ, Kanakaris NK, Giannoudis PV (2007) Debridement and wound closure of open fractures: the impact of the time factor on infection rates. Injury 38(8):879–889 CrossRefPubMedGoogle Scholar
  36. 36.
    Hampton OP (1955) Basic principles in management of open fractures. J Am Med Assoc 159(5):417–419 CrossRefPubMedGoogle Scholar
  37. 37.
    Benson DR, Riggins RS, Lawrence RM et al. (1983) Treatment of open fractures: a prospective study. J Trauma 23(1):25–30 CrossRefPubMedGoogle Scholar
  38. 38.
    Okike K, Bhattacharyya T (2006) Trends in the management of open fractures: a critical analysis. J Bone Jt Surg Am 88(12):2739–2748 CrossRefGoogle Scholar
  39. 39.
    Rohmiller MT, Kusuma S, Blanchard GM et al (2014) Management of open fractures of the lower extremity: do timing of operative treatment and primary wound closure really matter. OTA Abstracts OTA 2002—Session 3 Google Scholar
  40. 40.
    Moola FO, Jacks D, Reindl R et al (2014) Safety of primary closure of soft tissue wounds in open fractures. OTA Abstracts Section 11—Paper 47 Google Scholar
  41. 41.
    Weitz-Marshall AD, Bosse MJ (2002) Timing of closure of open fractures. J Am Acad Orthop Sur 10(6):379–384 CrossRefGoogle Scholar
  42. 42.
    Ostermann PA, Seligson D, Henry SL (1995) Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Jt Surg Br 77(1):93–97 Google Scholar
  43. 43.
    Gopal S, Majumder S, Batchelor AG et al. (2000) Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Jt Surg Br 82(7):959–966 CrossRefGoogle Scholar
  44. 44.
    Herscovici D Jr, Sanders RW, Scaduto JM et al. (2003) Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries. J Orthop Trauma 17:683–688 CrossRefPubMedGoogle Scholar
  45. 45.
    Parrett BM, Matros E, Pribaz JJ, Orgill DP (2006) Lower extremity trauma: trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. Plast Reconstr Surg 117:1315 CrossRefPubMedGoogle Scholar
  46. 46.
    Dedmond BT, Kortesis B, Punger K et al. (eds) (2007) The use of negative-pressure wound therapy (NPWT) in the temporary treatment of soft-tissue injuries associated with high-energy open tibial shaft fractures. J Orthop Trauma 21:11–17 CrossRefPubMedGoogle Scholar
  47. 47.
    Argenta LC, Morykwas MJ (1997) Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg 38:563–576 CrossRefPubMedGoogle Scholar
  48. 48.
    Morykwas MJ, Argenta LC, Shelton-Brown EI, McGuirt W (1997) Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 38:553–562 CrossRefPubMedGoogle Scholar
  49. 49.
    Bhattacharyya T, Mehta P, Smith M, Pomahac B (2008) Routine use of wound vacuum-assisted closure does not allow coverage delay for open tibia fractures. Plast Reconstr Surg 121:1263–1266 CrossRefPubMedGoogle Scholar
  50. 50.
    Zalavras CG, Marcus RE, Levin LS, Patzakis MJ (2007) Management of open fractures and subsequent complications. J Bone Jt Surg Am 89:884–895 CrossRefGoogle Scholar
  51. 51.
    Merritt K (1988) Factors increasing the risk of infection in patients with open fractures. J Trauma 28:823–827 CrossRefPubMedGoogle Scholar
  52. 52.
    Worlock P, Slack R, Harvey L, Mawhinney R (1994) The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury 25:31–38 CrossRefPubMedGoogle Scholar
  53. 53.
    Gustilo RB, Merkow RL, Templeman D (1990) The management of open fractures. J Bone Jt Surg Am 72:299–304 CrossRefGoogle Scholar
  54. 54.
    Hildebrand F, Giannoudis P, Kretteck C, Pape HC (2004) Damage control: extremities. Injury 35:678–689 CrossRefPubMedGoogle Scholar
  55. 55.
    Pape HC, Hildebrand F, Pertschy S et al. (2002) Changes in the management of femoral shaft fractures in polytrauma patients: from early total care to damage control orthopedic surgery. J Trauma 53:452–462 CrossRefPubMedGoogle Scholar
  56. 56.
    Sirkin M, Sanders R, Di Pasquale T, Herscovici D Jr (2004) A staged protocol for soft tissue management in the treatment of complex pilon fractures. J Orthop Trauma 18:S32–S38 CrossRefPubMedGoogle Scholar
  57. 57.
    Watson JT, Moed BR, Karges DE, Cramer KE (2000) Pilon fractures: treatment protocol based on severity of soft tissue injury. Clin Orthop Relat Res 375:78–90 CrossRefGoogle Scholar
  58. 58.
    Cole PA, Zlowodzki M, Kregor PJ (2004) Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma 18:528–535 CrossRefPubMedGoogle Scholar
  59. 59.
    Kregor PJ, Stannard JA, Zlowodzki M, Cole PA (2004) Treatment of distal femur fractures using the less invasive stabilization system: surgical experience and early clinical results in 103 fractures. J Orthop Trauma 18:509–520 CrossRefPubMedGoogle Scholar
  60. 60.
    Stannard JP, Wilson TC, Volgas DA, Alonso JE (2003) Fracture stabilization of proximal tibial fractures with the proximal tibial LISS: early experience in Birmingham, Alabama (USA). Injury 34:A36–A42 CrossRefPubMedGoogle Scholar
  61. 61.
    Syed AA, Agarwal M, Giannoudis PV et al. (2004) Distal femoral fractures: long-term outcome following stabilisation with the LISS. Injury 35:599–607 CrossRefPubMedGoogle Scholar
  62. 62.
    Bhandari M, Guyatt GH, Tornetta P 3rd (eds) et al. (2002) Current practice in the intramedullary nailing of tibial shaft fractures: an international survey. J Trauma 53:725–732 CrossRefPubMedGoogle Scholar
  63. 63.
    Nowotarski PJ, Turen CH, Brumback RJ, Scarboro JM (2000) Conversion of external fixation to intramedullary nailing for fractures of the shaft of the femur in multiply injured patients. J Bone Jt Surg Am 82:781–788 CrossRefGoogle Scholar
  64. 64.
    Blachut PA, Meek RN, O’Brien PJ (1990) External fixation and delayed intramedullary nailing of open fractures of the tibial shaft: a sequential protocol. J Bone Jt Surg Am 72:729–735 CrossRefGoogle Scholar
  65. 65.
    Dougherty PJ, Silverton C, Yeni Y et al. (2006) Conversion from temporary external fixation to definitive fixation: shaft fractures. J Am Acad Orthop Surg 14:S124–S127 CrossRefPubMedGoogle Scholar
  66. 66.
    Patzakis MJ, Wilkins J, Moore TM (1983) The use of antibiotics in open tibial fractures. Clin Orthop Relat Res 178:31–35 Google Scholar
  67. 67.
    Patzakis MJ, Wilkins J (1989) Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res 243:36–40 Google Scholar
  68. 68.
    Carsenti-Etesse H, Doyon F, Desplaces N et al. (1999) Epidemiology of bacterial infection during management of open leg fractures. Eur J Clin Microbiol Infect Dis 18(5):315–323 CrossRefPubMedGoogle Scholar
  69. 69.
    Whoff WS, Bonadies JA, Cachecho R, Dorlac WC (2011) East practice management guidelines work group: update to practice management guidelines for prophylactic antibiotic use in open fractures. J Trauma 70(3):751–754 CrossRefGoogle Scholar

Copyright information

© Società Italiana Ortopedici Traumatologi Ospedalieri d’Italia 2016

Authors and Affiliations

  1. 1.UOC di Orto-TraumatologiaASLCE Ospedale “S.G. Moscati”AversaItalia
  2. 2.UOC di Orto-TraumatologiaASL NA1 Ospedale “San Paolo”NapoliItalia
  3. 3.Dipartimento di Ortopedia e TraumatologiaUniversità degli Studi di Catanzaro “Magna Graecia”CatanzaroItalia

Personalised recommendations