Skip to main content
Log in

Non-symmetrical composite-based path modeling

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Partial least squares path modeling presents some inconsistencies in terms of coherence with the predictive directions specified in the inner model (i.e. the path directions), because the directions of the links in the inner model are not taken into account in the iterative algorithm. In fact, the procedure amplifies interdependence among blocks and fails to distinguish between dependent and explanatory blocks. The method proposed in this paper takes into account and respects the specified path directions, with the aim of improving the predictive ability of the model and to maintain the hypothesized theoretical inner model. To highlight its properties, the proposed method is compared to the classical PLS path modeling in terms of explained variability, predictive relevance and interpretation using artificial data through a real data application. A further development of the method allows to treat multi-dimensional blocks in composite-based path modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In particular, when new Mode A is applied, outer weights are normalized to unit length.

  2. Weights are then standardized such that the resulting composite has unit variance.

References

  • Aguirre-Urreta MI, Marakas GM (2014) Research notepartial least squares and models with formatively specified endogenous constructs: a cautionary note. Inf Syst Res 25(4):761–778. https://doi.org/10.1287/isre.2013.0493

    Article  Google Scholar 

  • Apel H, Wold H (1982) Soft modeling with latent variables in two or more dimensions: PLS estimation and testing for predictive relevance. In: Jöreskog K, Wold H (eds) Systems under indirect observations. Part II. North-Holland, Amsterdam, pp 209–247

    Google Scholar 

  • Becker JM, Arun R, Edward ER (2013) Predictive validity and formative measurement in structural equation modeling: embracing practical relevance. In: Proceedings of the international conference on information systems (ICIS)

  • Chin WW (1998) The partial least squares approach for structural equation modeling. In: Marcoulides G (ed) Modern methods for business research. Lawrence Erlbaum Associates, London, pp 295–336

    Google Scholar 

  • Chin WW (2010) How to write up and report PLS analyses. In: Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares. Springer, Berlin, pp 655–690

    Chapter  Google Scholar 

  • Dijkstra TK (2017) A perfect match between a model and a mode. In: Latan H, Noonan R (eds) Partial least squares path modeling: basic concepts, methodological issues and applications. Springer, Cham, pp 55–80. https://doi.org/10.1007/978-3-319-64069-3_4

    Chapter  Google Scholar 

  • Dolce P, Lauro N (2015) Comparing maximum likelihood and PLS estimates for structural equation modeling with formative blocks. Qual Quant 49:891–902. https://doi.org/10.1007/s11135-014-0106-8

    Article  Google Scholar 

  • Dolce P, Esposito Vinzi V, Lauro C (2016) Path directions incoherence in pls path modeling: a prediction-oriented solution. In: Abdi H, Esposito Vinzi V, Russolillo G, Saporta G, Trinchera L (eds) The multiple facets of partial least squares methods—springer proceedings in mathematics and statistics. Springer, New York

    MATH  Google Scholar 

  • Esposito Vinzi V, Russolillo G (2013) Partial least squares algorithms and methods. WIREs Comput Stat 5:1–19

    Article  Google Scholar 

  • Evermann J, Tate M (2016) Assessing the predictive performance of structural equation model estimators. J Bus Res 69:4565–4582

    Article  Google Scholar 

  • Fornell C, Bookstein FL (1982) Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J Mark Res 19(4):440–452. http://www.jstor.org/stable/3151718

    Article  Google Scholar 

  • Fornell C, Barclay DW, Rhee BD (1988) A model and simple iterative algorithm for redundancy analysis. Multivar Behav Res 23(3):349–360

    Article  Google Scholar 

  • Geisser S (1975) The predictive sample reuse method with applications. J Am Stat Assoc 70:320–328

    Article  Google Scholar 

  • Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theory Pract 19(2):139–152

    Article  Google Scholar 

  • Hanafi M (2007) PLS path modeling: computation of latent variables with the estimation mode B. Comput Stat 22:275–292

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer, Berlin

    Book  Google Scholar 

  • Henseler J, Ringle C, Sinkovics R (2009) The use of partial least squares path modeling in international marketing. Adv Int Mark 20:277–319

    Google Scholar 

  • Henseler J, Hubona G, Ray PA (2016) Using PLS path modeling in new technology research: updated guidelines. Ind Manag Data Syst 116(1):2–20. https://doi.org/10.1108/imds-09-2015-0382

    Article  Google Scholar 

  • Höskuldsson A (2009) Modelling procedures for directed network of data blocks. Chemom Intell Lab Syst 97(1):3–10. https://doi.org/10.1016/j.chemolab.2008.09.002, selected papers presented at the 6th Winter Symposium on Chemometrics Kazan, Russia 16–22 February (2008)

    Article  Google Scholar 

  • Höskuldsson A (2014) Path regression models and process control optimisation. J Chemom 28(4):235–248. https://doi.org/10.1002/cem.2600 cEM-13-0182.R1

    Article  Google Scholar 

  • Johansson J (1981) An extension of Wollenberg’s redundancy analysis. Psychometrika 46(1):93–103. https://doi.org/10.1007/BF02293921

    Article  MathSciNet  Google Scholar 

  • Krämer N (2007) Analysis of high-dimensional data with partial least squares and boosting. Ph.D. thesis, Technische Universität Berlin, Berlin, Germany

  • Lauro N, D’Ambra L (1992) Non symmetrical exploratory data analysis. Stat Appl 4(4):511–529

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: a package for multivariate analysis. J Stat Softw 25(1):1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • Lohmöller J (1989) Latent variable path modeling with partial least squares. Physica, Heildelberg

    Book  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, Chichester

    MATH  Google Scholar 

  • Martens M, Tenenhaus M, Esposito V, Martens V (2007) The use of partial least squares methods in new food product development. In: MacFie H (ed) Consumer-led food products development. Woodhead Publishing Lmt, Cambridge, pp 492–523

    Chapter  Google Scholar 

  • Næs T, Tomic O, Mevik BH, Martens H (2011) Path modelling by sequential PLS regression. J Chemom 25(1):28–40. https://doi.org/10.1002/cem.1357

    Article  Google Scholar 

  • Pagés J, Asselin C, Morlat R, Robichet J (1987) L’analyse factorielle multiple dans le traitement des données sensorielles. Application à des vins rouges de la vallée de la Loire. Sci des Aliments 7:549–571

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

  • Rigdon EE (2012) Rethinking partial least squares path modeling: in praise of simple methods. Long Range Plan 45:341–358

    Article  Google Scholar 

  • Rigdon EE (2016) Choosing PLS path modeling as analytical method in European management research: a realist perspective. Eur Manag J. https://doi.org/10.1016/j.emj.2016.05.006

    Article  Google Scholar 

  • Ringle C, Sarstedt M, Straub D (2012) A critical look at the use of PLS-sem in mis quarterly. MIS Q 36:3–14

    Google Scholar 

  • Rönkkö M (2017) Matrixpls: matrix-based partial least squares estimation. https://github.com/mronkko/matrixpls, r package version 1.0.5

  • Rönkkö M, McIntosh CN, Antonakis J, Edwards JR (2016) Partial least squares path modeling: time for some serious second thoughts. J Oper Manag 47–48(Complete):9–27. https://doi.org/10.1016/j.jom.2016.05.002

    Article  Google Scholar 

  • Sarstedt M, Ringle C, Henseler J, Hair J (2014) On the emancipation of PLS-SEM: a commentary on rigdon (2012). Long Range Plan 47:154–160

    Article  Google Scholar 

  • Sarstedt M, Hair JF, Ringle CM, Thiele KO, Gudergan SP (2016) Estimation issues with PLS and cbsem: where the bias lies!. J Bus Res 69(10):3998–4010. https://doi.org/10.1016/j.jbusres.2016.06.007

    Article  Google Scholar 

  • Shmueli G, Ray S, Velasquez Estrada J, Chatla S (2016) The elephant in the room: predictive performance of PLS models. J Bus Res 69(10):4552–4564

    Article  Google Scholar 

  • Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc 36:111–147

    MathSciNet  MATH  Google Scholar 

  • Tenenhaus M (2008) Component-based structural equation modelling. Total Qual Manag Bus Excell 19:871–886

    Article  Google Scholar 

  • Tenenhaus M, Hanafi M (2010) A bridge between PLS path modeling and multi-block data analysis. In: Esposito Vinzi V, Chin W, Henseler J, Wang H (eds) Handbook of partial least squares (PLS): concepts, methods and applications. Springer, Berlin

    Google Scholar 

  • Tenenhaus A, Tenenhaus M (2011) Regularized generalized canonical correlation analysis. Psychometrika 76(2):257–284. https://doi.org/10.1007/s11336-011-9206-8

    Article  MathSciNet  MATH  Google Scholar 

  • Tenenhaus M, Vinzi VE (2005) PLS regression, PLS path modeling and generalized procrustean analysis: a combined approach for PLS regression, PLS path modeling and generalized multiblock analysis. J Chemom 19:145–153

    Article  Google Scholar 

  • Tenenhaus M, Esposito VV, Chatelin YM, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205

    Article  MathSciNet  Google Scholar 

  • Tucker L (1958) An inter-battery method of factor analysis. Psychometrika 23:111–136

    Article  MathSciNet  Google Scholar 

  • Vittadini G, Minotti SC, Fattore M, Lovaglio PG (2007) On the relationships among latent variables and residuals in PLS path modeling: the formative-reflective scheme. Comput Stat Data Anal 51(12):5828–5846. https://doi.org/10.1016/j.csda.2006.10.023

    Article  MathSciNet  MATH  Google Scholar 

  • Wertz C, Linn R, Jöreskog K (1974) Intraclass reliability estimates: testing structural assumptions. Educ Psychol Meas 34(1):25–33

    Article  Google Scholar 

  • Wold H (1980) Model construction and evaluation when theoretical knowledge is scarce. In: Ramsey JB, Kmenta J (eds) Evaluation of econometric models. Academic Press, pp 47–74

  • Wold H (1982) Soft modeling: the basic design and some extensions. In: Jöreskog K, Wold H (eds) Systems under indirect observation, vol 2. North-Holland, Amsterdam, pp 1–54

    Google Scholar 

  • Wollenberg AL (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42(2):207–219. https://doi.org/10.1007/BF02294050

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Dolce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolce, P., Vinzi, V.E. & Lauro, N.C. Non-symmetrical composite-based path modeling. Adv Data Anal Classif 12, 759–784 (2018). https://doi.org/10.1007/s11634-017-0302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-017-0302-1

Keywords

Mathematics Subject Classification

Navigation