A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles

Abstract

The underwater path planning problem deals with finding an optimal or sub-optimal route between an origin point and a termination point in marine environments. The underwater environment is still considered as a great challenge for the path planning of autonomous underwater vehicles (AUVs) because of its hostile and dynamic nature. The major constraints for path planning are limited data transmission capability, power and sensing technology available for underwater operations. The sea environment is subjected to a large set of challenging factors classified as atmospheric, coastal and gravitational. Based on whether the impact of these factors can be approximated or not, the underwater environment can be characterized as predictable and unpredictable respectively. The classical path planning algorithms based on artificial intelligence assume that environmental conditions are known apriori to the path planner. But the current path planning algorithms involve continual interaction with the environment considering the environment as dynamic and its effect cannot be predicted. Path planning is necessary for many applications involving AUVs. These are based upon planning safety routes with minimum energy cost and computation overheads. This review is intended to summarize various path planning strategies for AUVs on the basis of characterization of underwater environments as predictable and unpredictable. The algorithms employed in path planning of single AUV and multiple AUVs are reviewed in the light of predictable and unpredictable environments.

References

  1. [1]

    M. Dinc, C. Hajiyev. Integration of navigation systems for autonomous underwater vehicles. Journal of Marine Engineering & Technology, vol. 14, no. 1, pp. 32–43, 2015. DOI: https://doi.org/10.1080/20464177.2015.1022382.

    Article  Google Scholar 

  2. [2]

    B. K. Sahu, B. Subudhi, M. M. Gupta. Stability analysis of an underactuated autonomous underwater vehicle using extended-Routh’s stability method. International Journal of Automation and Computing, vol. 15, no. 3, pp. 299–309, 2018. DOI: https://doi.org/10.1007/s11633-016-0992-4.

    Article  Google Scholar 

  3. [3]

    J. J. Leonard, A. Bahr. Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering, M. R. Dhanak, N. I. Xiros, Eds., Cham, Germany: Springer, pp. 341–358, 2016. DOI: https://doi.org/10.1007/978-3-31916649-0_14.

    Google Scholar 

  4. [4]

    J. C. Kinsey, R. M. Eustice, L. L. Whitcomb. A survey of underwater vehicle navigation: Recent advances and new challenges. In Proceedings of IFAC Conference of Manoeuvring and Control of Marine Craft, IFAC, Lisbon, Portugal, vol. 88, pp. 1–12, 2006.

    Google Scholar 

  5. [5]

    D. Soetanto, L. Lapierre, A. Pascoal. Adaptive, non-singular path-following control of dynamic wheeled robots. In Proceedings of the 42nd IEEE International Conference on Decision and Control, IEEE, Maui, USA, vol. 2, pp. 1765–1770, 2003. DOI: https://doi.org/10.1109/CDC.2003.1272868.

    Google Scholar 

  6. [6]

    J. Plaskonka. Different kinematic path following controllers for a wheeled mobile robot of (2,0) Type. Journal of Intelligent and Robot Systems, vol. 77, no. 3–4, pp. 481–498, 2015.

    Article  Google Scholar 

  7. [7]

    P. Encarnaçao, A. Pascoal. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In Proceedings of the 40th IEEE Conference on Decision and Control, IEEE, Orlando, USA, vol. 1, pp. 964–969, 2001. DOI: https://doi.org/10.1109/CDC.2001.980234.

    Google Scholar 

  8. [8]

    M. Aicardi, G. Casalino, G. Indiveri, A. Aguiar, P. Encarnaçäo, A. Pascoal. A planar path following controller for underactuated marine vehicles. In Proceedings of the 9th IEEE Mediterranean Conference on Control and Automation, IEEE, Dubrovnik, Croatia, pp. 1–6, 2001.

    Google Scholar 

  9. [9]

    A. P. Aguiar, J. P. Hespanha. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1362–1379, 2007. DOI: https://doi.org/10.1109/TAC.2007.902731.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    L. Lapierre, D. Soetanto. Nonlinear path-following control of an AUV. Ocean Engineering, vol. 34, no. 11–12, pp. 1734–1744, 2007. DOI: https://doi.org/10.1016/j.oceaneng.2006.10.019.

    Article  Google Scholar 

  11. [11]

    L. Lapierre, B. Jouvencel. Robust nonlinear path-following control of an AUV. IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 89–102, 2008. DOI: https://doi.org/10.1109/JOE.2008.923554.

    Article  Google Scholar 

  12. [12]

    T. Liu, Z. P. Dong, H. W. Du, L. F. Song, Y. S. Mao. Path following control of the underactuated USV based on the improved line-of-sight guidance algorithm. Polish Maritime Research, vol. 24, no. 1, pp. 3–11, 2017. DOI: https://doi.org/10.1515/pomr-2017-0001.

    Article  Google Scholar 

  13. [13]

    Z. Li, J. Sun, S. Oh. Design. analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels. Automatica, vol. 45, no. 7, pp. 1649–1658, 2009. DOI: https://doi.org/10.1016/j.automatica.2009.03.010.

    MathSciNet  MATH  Google Scholar 

  14. [14]

    X. B. Xiang, C. Y. Yu, Q. Zhang. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Computers & Operations Research, vol. 84, pp. 165–177, 2017. DOI: https://doi.org/10.1016/j.cor.2016.09.017.

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    P. Maurya, A. P. Aguiar, A. Pascoal. Marine vehicle path following using inner-outer loop control. IFAC Proceedings Volumes, vol. 42, no. 18, pp. 38–43, 2009. DOI: https://doi.org/10.3182/20090916-3-BR-3001.0071.

    Article  Google Scholar 

  16. [16]

    B. Subudhi, D. Atta. Design of a path following controller for an underactuated AUV. Archives of Control Sciences, vol. 19, no. 3, pp. 245–259, 2009.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    B. Subudhi, K. Mukherjee, S. Ghosh. A static output feedback control design for path following of autonomous underwater vehicle in vertical plane. Ocean Engineering, vol. 63, pp. 72–76, 2013. DOI: https://doi.org/10.1016/j.oceaneng.2013.01.029.

    Article  Google Scholar 

  18. [18]

    T. I. Fossen. Guidance and Control of Ocean Vehicles, New York, USA: Wiley, pp. 6–54, 1994.

    Google Scholar 

  19. [19]

    C. Silvestre, R. Cunha, N. Paulino, A. Pascoal. A bottom-following preview controller for autonomous underwater vehicles. IEEE Transactions on Control Systems Technology, vol. 17, no. 2, pp. 257–266, 2009. DOI: https://doi.org/10.1109/TCST.2008.922560.

    Article  Google Scholar 

  20. [20]

    Z. P. Yan, Y. B. Liu, J. J. Zhou, D. Wu. Path following control of an AUV under the current using the SVR-ADRC. Journal of Applied Mathematics, vol. 2014, Article number 476419, 2014. DOI: https://doi.org/10.1155/2014/476419.

    Google Scholar 

  21. [21]

    D. X. Ji, J. Liu, H. Y. Zhao, Y. Q. Wang. Path following of autonomous vehicle in 2D space using multivariable sliding mode control. Journal of Robotics, vol. 2014, Article number 217875, 2014. DOI: https://doi.org/10.1155/2014/217875.

    Google Scholar 

  22. [22]

    V. Filaretov, D. Yukhimets. The synthesis of AUV highprecision path following control system on the base of PD-controller. In Proceedings of 2016 International Conference on Computer, Control, Informatics and its Applications, IEEE, Tangerang, Indonesia, pp. 131–136, 2016. DOI: https://doi.org/10.1109/IC3INA.2016.7863037.

    Google Scholar 

  23. [23]

    M. Xiao. Modeling and adaptive sliding mode control of the catastrophic course of a high-speed underwater vehicle. International Journal of Automation and Computing, vol. 10, no. 3, pp. 210–216, 2013. DOI: https://doi.org/10.1007/s11633-013-0714-0.

    MathSciNet  Article  Google Scholar 

  24. [24]

    C. Shen, Y. Shi, B. Buckham. Path-following control of an AUV using multi-objective model predictive control. In Proceedings of 2016 American Control Conference, IEEE, Boston, USA, pp. 4507–4512, 2016. DOI: https://doi.org/10.1109/ACC.2016.7526062.

    Google Scholar 

  25. [25]

    B. Das, B. Subudhi, B. B. Pati. Cooperative formation control of autonomous underwater vehicles: An overview. International Journal of Automation and Computing, vol. 13, no. 3, pp. 199–225, 2016. DOI: https://doi.org/10.1007/s11633016-1004-4.

    Article  Google Scholar 

  26. [26]

    J. Guerrero, E. Antonio, A. Manzanilla, J. Torres, R. Lozano. Autonomous underwater vehicle robust path tracking: Auto-adjustable gain high order sliding mode controller. IFAC-PapersOnLine, vol. 51, no. 13, pp. 161–166, 2018. DOI: https://doi.org/10.1016/j.ifacol.2018.07.272

    Article  Google Scholar 

  27. [27]

    Z. P. Yan, J. Y. Li, G. S. Zhang, Y. Wu. A real-time reaction obstacle avoidance algorithm for autonomous underwater vehicles in unknown environments. Sensors, vol. 18, no. 2, Article number 438, 2018. DOI: https://doi.org/10.3390/s18020438.

    Google Scholar 

  28. [28]

    J. Li, J. X. Zhang, H. H. Zhang, Z. P. Yan. A predictive guidance obstacle avoidance algorithm for AUV in unknown environments. Sensors, vol. 19, no. 13, Article number 2862, 2019. DOI: https://doi.org/10.3390/s19132862.

    Google Scholar 

  29. [29]

    D. L. Li, P. Wang, L. Du. Path planning technologies for autonomous underwater vehicles-a review. IEEE Access, vol. 7, pp. 9745–9768, 2019. DOI: https://doi.org/10.1109/ACCESS.2018.2888617.

    Article  Google Scholar 

  30. [30]

    A. E. Bryson. Applied Optimal Control: Optimization, Estimation, and Control, New York, USA: Routledge, 2018.

    Google Scholar 

  31. [31]

    Y. Petillot, I. T. Ruiz, D. M. Lane. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE Journal of Oceanic Engineering, vol. 26, no. 2, pp. 240–251, 2001. DOI: https://doi.org/10.1109/48.922790.

    Article  Google Scholar 

  32. [32]

    M. Chyba, T. Haberkorn. Autonomous underwater vehicles: Singular extremals and chattering. In Proceedings of the 22nd IFIP TC7 Conference on System Modeling and Optimization, Springer, Turin, Italy, pp. 103–113, 2006. DOI: https://doi.org/10.1007/0-387-33882-9_10.

    Google Scholar 

  33. [33]

    M. Chyba, T. Haberkorn, R. N. Smith, S. K. Choi. Design and implementation of time efficient trajectories for autonomous underwater vehicles. Ocean Engineering, vol. 35, no. 1, pp. 63–76, 2008. DOI: https://doi.org/10.1016/j.oceaneng.2007.07.007.

    Article  Google Scholar 

  34. [34]

    M. Eichhorn. An obstacle avoidance system for an autonomous underwater vehicle. In Proceedings of International Symposium on Underwater Technology, IEEE, Taipei, Taiwan, China, pp. 75–82, 2004. DOI: https://doi.org/10.1109/UT.2004.1405482.

    Google Scholar 

  35. [35]

    M. Eichhorn. A reactive obstacle avoidance system for an autonomous underwater vehicle. IFAC Proceedings Volumes, vol. 38, no. 1, pp. 331–336, 2005. DOI: https://doi.org/10.3182/20050703-6-CZ-1902.01325.

    Article  Google Scholar 

  36. [36]

    K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K. Friesen, G. N. William. AUV path planning: An A* approach to path planning with consideration of variable vehicle speeds and multiple, overlapping, time-dependent exclusion zones. In Proceedings of Symposium on Autonomous Underwater Vehicle Technology, IEEE, Washington, USA, pp. 79–84, 1992. DOI: https://doi.org/10.1109/AUV.1992.225191.

    Google Scholar 

  37. [37]

    J. G. Bellingham, J. S. Willcox. Optimizing AUV oceanographic surveys. In Proceedings of Symposium on Autonomous Underwater Vehicle Technology, IEEE, Monterey, USA, pp. 391–398, 1996. DOI: https://doi.org/10.1109/AUV.1996.532439.

    Google Scholar 

  38. [38]

    S. Hert, S. Tiwari, V. Lumelsky. A terrain-covering algorithm for an AUV. In Underwater Robots, J. Yuh, T. Ura, G. A. Bekey, Eds., Boston, USA: Springer, pp. 17–45, 1996. DOI: https://doi.org/10.1007/978-1-4613-1419-6_2.

    Google Scholar 

  39. [39]

    B. Garau, A. Alvarez, G. Oliver. Path planning of autonomous underwater vehicles in current fields with complex spatial variability: An A* approach. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 194–198, 2005. DOI: https://doi.org/10.1109/ROBOT.2005.1570118.

    Google Scholar 

  40. [40]

    E. S. H. Hou, D. Zheng. Hierarchical path planning with hexagonal decomposition. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, IEEE, Virginia, pp. 1005–1010, 1991. DOI: https://doi.org/10.1109/ICSMC.1991.169819.

    Google Scholar 

  41. [41]

    J. Kim, S. Kim, Y. Choo. Stealth path planning for a high speed torpedo-shaped autonomous underwater vehicle to approach a target ship. Cyber-Physical Systems, vol. 4, no. 1, pp. 1–16, 2018. DOI: https://doi.org/10.1080/23335777.2018.1431959.

    MathSciNet  Article  Google Scholar 

  42. [42]

    C. W. Warren. A technique for autonomous underwater vehicle route planning. IEEE Journal of Oceanic Engineering, vol. 15, no. 3, pp. 199–204, 1990. DOI: https://doi.org/10.1109/48.107148.

    Article  Google Scholar 

  43. [43]

    M. L. Seto. Marine Robot Autonomy, New York, USA: Springer, pp. 178–224, 2012.

    Google Scholar 

  44. [44]

    J. C. Latombe. Robot Motion Planning, Boston, USA: Springer, vol. 124, 1991. DOI: https://doi.org/10.1007/978-1-4615-4022-9.

    Google Scholar 

  45. [45]

    T. Maki, Y. Noguchi, Y. Kuranaga, K. Masuda, T. Sakamaki, M. Humblet, Y. Furushima. Low-altitude and high-speed terrain tracking method for lightweight AUVs. Journal of Robotics and Mechatronics, vol. 30, no. 6, pp. 971–979, 2018. DOI: https://doi.org/10.20965/jrm.2018.p0971.

    Article  Google Scholar 

  46. [46]

    I. Spangelo, O. Egeland. Trajectory planning and collision avoidance for underwater vehicles using optimal control. IEEE Journal of Oceanic Engineering, vol. 19, no. 4, pp. 502–511, 1994. DOI: https://doi.org/10.1109/48.338386.

    Article  Google Scholar 

  47. [47]

    T. W. McLain, R. W. Beard. Successive Galerkin approximations to the nonlinear optimal control of an underwater robotic vehicle. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Leuven, Belgium, vol. 1, pp. 762–767, 1998. DOI: https://doi.org/10.1109/ROBOT.1998.677069.

    Google Scholar 

  48. [48]

    N. Sakagami, S. Kawamura. Time optimal control for underwater robot manipulators based on iterative learning control and time-scale transformation. In Proceedings of Oceans 2003. Celebrating the Past… Teaming Toward the Future, IEEE, San Diego, USA, vol. 3, pp. 1180–1186, 2003. DOI: https://doi.org/10.1109/OCEANS.2003.178015.

    Google Scholar 

  49. [49]

    R. P. Kumar, A. Dasgupta, C. S. Kumar. Real-time optimal motion planning for autonomous underwater vehicles. Ocean Engineering, vol. 32, no. 11–12, pp. 1431–1447, 2005. DOI: https://doi.org/10.1016/j.oceaneng.2004.11.010.

    Article  Google Scholar 

  50. [50]

    N. Sadegh. Time-optimal motion planning of autonomous vehicles in the presence of obstacles. In Proceedings of 2008 American Control Conference, IEEE, Seattle, USA, pp. 1830–1835, 2008. DOI: https://doi.org/10.1109/ACC.2008.4586758.

    Google Scholar 

  51. [51]

    M. Soulignac, P. Taillibert, M. Rueher. Time-minimal path planning in dynamic current fields. In Proceedings of 2009 IEEE International Conference on Robotics and Automation, IEEE, Kobe, Japan, pp. 2473–2479, 2009. DOI: https://doi.org/10.1109/ROBOT.2009.5152426.

    Google Scholar 

  52. [52]

    A. A. Pereira, J. Binney, G. A. Hollinger, G. S. Sukhatme. Risk-aware path planning for autonomous underwater vehicles using predictive ocean models. Journal of Field Robotics, vol. 30, no. 5, pp. 741–762, 2013. DOI: https://doi.org/10.1002/rob.21472.

    Article  Google Scholar 

  53. [53]

    Y. Liu and Y. Qiu. Robot path planning based on genetic algorithms with two-layer encoding. Control Theory and Applications, vol. 17, no. 3, pp. 429–432, 2000. DOI: https://doi.org/10.3969/j.issn.1000-8152.2000.03.024.

    MathSciNet  MATH  Google Scholar 

  54. [54]

    A. Alvarez, A. Caiti. A genetic algorithm for autonomous undetwater vehicle route planning in ocean environments with complex space-time variability. IFAC Proceedings Volumes, vol. 34, no. 7, pp. 237–242, 2001. DOI: https://doi.org/10.1016/S1474-6670(17)35089-9.

    Article  Google Scholar 

  55. [55]

    E. Elbeltagi, T. Hegazy, D. Grierson. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics, vol. 19, no. 1, pp. 43–53, 2005. DOI: https://doi.org/10.1016/j.aei.2005.01.004.

    Article  Google Scholar 

  56. [56]

    M. P. Aghababa, M. H. Amrollahi, M. Borjkhani. Application of GA, P SO. and ACO algorithms to path planning of autonomous underwater vehicles. Journal of Marine Science and Application, vol. 11, no. 3, pp. 378–386, 2012. DOI: https://doi.org/10.1007/s11804-012-1146-x.

    Article  Google Scholar 

  57. [57]

    M. P. Aghababa. 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Applied Ocean Research, vol. 38, pp. 48–62, 2012. DOI: https://doi.org/10.1016/j.apor.2012.06.002.

    Article  Google Scholar 

  58. [58]

    C. Liu, Z. Q. Gao, W. H. Zhao. A new path planning method based on firefly algorithm. In Proceedings of the 5th International Joint Conference on Computational Sciences and Optimization, IEEE, Harbin, China, pp. 775–778, 2012. DOI: https://doi.org/10.1109/CSO.2012.174.

    Google Scholar 

  59. [59]

    J. Xu, Z. P. Yan, X. Q. Bian. Application of improved analytic hierarchy process to AUV’s decision-making. In Proceedings of International Conference on Mechatronics and Automation, IEEE, Harbin, China, pp. 571–575, 2007. DOI: https://doi.org/10.1109/ICMA.2007.4303606.

    Google Scholar 

  60. [60]

    A. Stentz. Optimal and efficient path planning for partially known environments. In Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon, M. H. Hebert, C. Thorpe, A. Stentz, Eds., Boston, USA: Springer, pp. 203–220, 1997. DOI: https://doi.org/10.1007/978-1-4615-6325-9_11.

    Google Scholar 

  61. [61]

    A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., Montreal, Canada, pp. 1652–1659, 1995.

    Google Scholar 

  62. [62]

    D. Ferguson, A. Stentz. Using interpolation to improve path planning: The field D* algorithm. Journal of Field Robotics, vol. 23, no. 2, pp. 79–101, 2006. DOI: https://doi.org/10.1002/rob.20109.

    MATH  Article  Google Scholar 

  63. [63]

    M. Soulignac, P. Taillibert, M. Rueher. Adapting the wavefront expansion in presence of strong currents. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Pasadena, USA, pp. 1352–1358, 2008. DOI: https://doi.org/10.1109/ROBOT.2008.4543391.

    Google Scholar 

  64. [64]

    H. Cao, N. E. Brener, S. Sitharama Iyengar. 3D large grid route planner for the autonomous underwater vehicles. International Journal of Intelligent Computing and Cybernetics, vol. 2, no. 3, pp. 455–476, 2009. DOI: https://doi.org/10.1108/17563780910982699.

    MathSciNet  Article  Google Scholar 

  65. [65]

    F. Khorrami, P. Krishnamurthy. A hierarchical path planning and obstacle avoidance system for an autonomous underwater vehicle. In Proceedings of American Control Conference, IEEE, St. Louis, USA, pp. 3579–3584, 2009. DOI: https://doi.org/10.1109/ACC.2009.5160300.

    Google Scholar 

  66. [66]

    B. Garau, M. Bonet, A. Alvarez, S. Ruiz, A. Pascual. Path planning for autonomous underwater vehicles in realistic oceanic current fields: Application to gliders in the western mediterranean sea. Journal of Maritime Research, vol. 6, no. 2, pp. 5–22, 2009.

    Google Scholar 

  67. [67]

    C. Vasudevan, K. Ganesan. Case-based path planning for autonomous underwater vehicles. Autonomous Robots, vol. 3, no. 2–3, pp. 79–89, 1996. DOI: https://doi.org/10.1007/BF00141149.

    Article  Google Scholar 

  68. [68]

    A. Atanassov, L. Antonov. Comparative analysis of case based reasoning software frameworks jcolibri and myCBR. Journal of the University of Chemical Technology and Metallurgy, vol. 47, no. 1, pp. 83–90, 2012.

    Google Scholar 

  69. [69]

    R. Philippsen, R. Siegwart. An interpolated dynamic navigation function. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 3782–3789, 2005. DOI: https://doi.org/10.1109/ROBOT.2005.1570697.

    Google Scholar 

  70. [70]

    C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans, D. Lane. Path planning for autonomous underwater vehicles. IEEE Transactions on Robotics, vol. 23, no. 2, pp. 331–341, 2007. DOI: https://doi.org/10.1109/TRO.2007.895057.

    Article  Google Scholar 

  71. [71]

    F. G. Ding, P. Jiao, X. Q. Bian, H. J. Wang. AUV local path planning based on virtual potential field. In Proceedings of IEEE International Conference Mechatronics and Automation, IEEE, Niagara Falls, Canada, pp. 1711–1716, 2005. DOI: https://doi.org/10.1109/ICMA.2005.1626816.

    Google Scholar 

  72. [72]

    D. Q. Zhu, C. L. Cheng, B. Sun. An integrated AUV path planning algorithm with ocean current and dynamic obstacles. International Journal of Robotics and Automation, vol. 31, no. 5, pp. 382–389, 2016.

    Google Scholar 

  73. [73]

    W. Z. Zhang, T. Inanc, S. Ober-Blobaum, J. E. Marsden. Optimal trajectory generation for a glider in time-varying 2D ocean flows B-spline model. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Pasadena, USA, pp. 1083–1088, 2008. DOI: https://doi.org/10.1109/ROBOT.2008.4543348.

    Google Scholar 

  74. [74]

    M. Eichhorn. Optimal routing strategies for autonomous underwater vehicles in time-varying environment. Robotics and Autonomous Systems, vol. 67, pp. 33–43, 2015. DOI: https://doi.org/10.1016/j.robot.2013.08.010.

    Article  Google Scholar 

  75. [75]

    A. Saffiotti. Fuzzy logic in autonomous navigation. Fuzzy Logic Techniques for Autonomous Vehicle Navigation, D. Driankov, A. Saffiotti, Eds., Heidelberg, Germany: Springer, pp. 3–24, 2001. DOI: https://doi.org/10.1007/978-3-7908-18352_1.

    Google Scholar 

  76. [76]

    V. Kanakakis, K. P. Valavanis, N. C. Tsourveloudis. Fuzzy-logic based navigation of underwater vehicles. Journal of Intelligent and Robotic Systems, vol. 40, no. 1, pp. 45–88, 2004. DOI: https://doi.org/10.1023/B:JINT.0000034340.87020.05.

    Article  Google Scholar 

  77. [77]

    D. Loebis, R. Sutton, J. Chudley, W. Naeem. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system. Control Engineering Practice, vol. 12, no. 12, pp. 1531–1539, 2004. DOI: https://doi.org/10.1016/j.conengprac.2003.11.008.

    Article  Google Scholar 

  78. [78]

    K. P. Valavanis. Unmanned vehcle navigation and control: A fuzzy logic perspective. In Proceedings of International Symposium on Evolving Fuzzy Systems, IEEE, Ambleside, UK, pp. 200–207, 2006. DOI: https://doi.org/10.1109/ISEFS.2006.251168.

    Google Scholar 

  79. [79]

    S. Kundu, D. R. Parhi. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. International Journal of Automation and Computing, vol. 14, no. 3, pp. 307–320, 2017. DOI: https://doi.org/10.1007/s11633-016-0983-5.

    Article  Google Scholar 

  80. [80]

    A. H. D. Markazi, M. Maadani, S. H. Zabihifar, N. DoostMohammadi. Adaptive fuzzy sliding mode control of under-actuated nonlinear systems. International Journal of Automation and Computing, vol. 15, no. 3, pp. 364–376, 2018. DOI: https://doi.org/10.1007/s11633-017-1108-5.

    Article  Google Scholar 

  81. [81]

    A. C. Schultz. Using a genetic algorithm to learn strategies for collision avoidance and local navigation. In Proceedings of the 7th International Symposium on Unmanned Untethered Submersible Technology, University of New Hampshire, Durham, UK, pp. 213–215 1991.

    Google Scholar 

  82. [82]

    H. Schmidt, E. Bovio. Underwater vehicle networks for acoustic and oceanographic measurements in the littoral ocean. IFAC Proceedings Volumes, vol. 33, no. 21, pp. 105–110, 2000. DOI: https://doi.org/10.1016/S1474-6670(17)37059-3.

    Article  Google Scholar 

  83. [83]

    A. Alvarez, A. Caiti, R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, vol. 29, no. 2, pp. 418–429, 2004. DOI: https://doi.org/10.1109/JOE.2004.827837.

    Article  Google Scholar 

  84. [84]

    H. J. Wang, J. Zhao, X. Q. Bian, X. C. Shi. An improved path planner based on adaptive genetic algorithm for autonomous underwater vehicle. In Proceedings of IEEE International Conference Mechatronics and Automation, IEEE, Niagara Falls, Canada, vol. 2, pp. 857–861, 2005. DOI: https://doi.org/10.1109/ICMA.2005.1626663.

    Google Scholar 

  85. [85]

    Q. R. Zhang. A hierarchical global path planning approach for AUV based on genetic algorithm. In Proceedings of International Conference on Mechatronics and Automation, IEEE, Luoyang, China, pp. 1745–1750, 2006. DOI: https://doi.org/10.1109/ICMA.2006.257478.

    Google Scholar 

  86. [86]

    D. Kruger, R. Stolkin, A. Blum, J. Briganti. Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments. In Proceedings IEEE International Conference on Robotics and Automation, IEEE, Roma, Italy, pp. 4265–4270, 2007. DOI: https://doi.org/10.1109/ROBOT.2007.364135.

    Google Scholar 

  87. [87]

    V. Kanakakis, N. Tsourveloudis. Evolutionary path planning and navigation of autonomous underwater vehicles. In Proceedings of Mediterranean Conference on Control & Automation, IEEE, Athens, Greece, 2007. DOI: https://doi.org/10.1109/MED.2007.4433919.

    Google Scholar 

  88. [88]

    C. B. Zhang, Y. J. Gong, J. J. Li, Y. Lin. Automatic path planning for autonomous underwater vehicles based on an adaptive differential evolution. In Proceedings of Annual Conference on Genetic and Evolutionary Computation, ACM, Vancouver, Canada, pp. 89–96, 2014. DOI: https://doi.org/10.1145/2576768.2598267.

    Google Scholar 

  89. [89]

    A. Zamuda J. D. Hernández Sosa. Differential evolution and underwater glider path planning applied to the shortterm opportunistic sampling of dynamic mesoscale ocean structures. Applied Soft Computing, vol. 24, pp. 95–108, 2014. DOI: https://doi.org/10.1016/j.asoc.2014.06.048.

    Article  Google Scholar 

  90. [90]

    A. Zamuda, J. D. Hernández Sosa, L. Adler. Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling. Applied Soft Computing, vol. 42, pp. 93–118, 2016. DOI: https://doi.org/10.1016/j.asoc.2016.01.038.

    Article  Google Scholar 

  91. [91]

    J. Witt, M. Dunbabin. Go with the flow: Optimal AUV path planning in coastal environments. In Proceedings of 2008 Australian Conference on Robotics and Automation, ARAA, Canberra, Australia, vol. 2, pp. 1–9, 2008.

    Google Scholar 

  92. [92]

    S. M. Zadeh. Efficient deployment and mission timing of autonomous underwater vehicles in large-scale operations. Robotics, vol. 2018, 2018.

    Google Scholar 

  93. [93]

    Z. P. Yan, J. Y. Li, Y. Wu, G. S. Zhang. A real-time path planning algorithm for AUV in unknown underwater environment based on combining PSO and waypoint guidance. Sensors, vol. 19, no. 1, Articlenumber 20, 2019. DOI:https://doi.org/10.3390/s19010020.

    Google Scholar 

  94. [94]

    Y. N. Ma, Y. J. Gong, C. F. Xiao, Y. Gao, J. Zhang. Path planning for autonomous underwater vehicles: An ant colony algorithm incorporating alarm pheromone. IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 141–154, 2019. DOI: https://doi.org/10.1109/TVT.2018.2882130.

    Article  Google Scholar 

  95. [95]

    M. Tavana, M. D. Bailey, T. E. Busch. A multi-criteria vehicle-target allocation assessment model for networkcentric joint air operations. International Journal of Operational Research, vol. 3, no. 3, pp. 235–254, 2008. DOI: https://doi.org/10.1504/IJOR.2008.017531.

    MATH  Article  Google Scholar 

  96. [96]

    M. Tavana, B. S. Bourgeowas. A multiple criteria decision support system for autonomous underwater vehicle mission planning and control. International Journal of Operational Research, vol. 7, no. 2, pp. 216–239, 2010. DOI: https://doi.org/10.1504/IJOR.2010.030804.

    Article  Google Scholar 

  97. [97]

    N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, N. M. Patrikalakis. Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE Journal of Oceanic Engineering, vol. 33, no. 4, pp. 522–537, 2008. DOI: https://doi.org/10.1109/JOE.2008.2002105.

    Article  Google Scholar 

  98. [98]

    J. Isern-González, D. Hernández-Sosa, E. Fernández-Perdomo, J. Cabrera-Gámez, A. C. Domínguez-Brito, V. Prieto-Marañón. Path planning for underwater gliders using iterative optimization. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Shanghai, China, pp. 1538–1543, 2011. DOI: https://doi.org/10.1109/ICRA.2011.5980274.

    Google Scholar 

  99. [99]

    A. García-Olaya, F. Py, J. Das, K. Rajan. An online utility-based approach for sampling dynamic ocean fields. IEEE Journal of Oceanic Engineering, vol. 37, no. 2, pp. 185–203, 2012. DOI: https://doi.org/10.1109/JOE.2012.2183934.

    Article  Google Scholar 

  100. [100]

    C. T. Cheng, K. Fallahi, H. Leung, C. K. Tse. An AUVs path planner using genetic algorithms with a deterministic crossover operator. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 2995–3000, 2010. DOI: https://doi.org/10.1109/ROBOT.2010.5509335.

    Google Scholar 

  101. [101]

    Z. Zeng, A. Lammas, K. Sammut, F. P. He. Optimal path planning based on annular space decomposition for AUVs operating in a variable environment. In Proceedings of IEEE/OES Autonomous Underwater Vehicles, IEEE, Southampton, UK, 2012. DOI: https://doi.org/10.1109/AUV.2012.6380759.

    Google Scholar 

  102. [102]

    Z. Zeng, K. Sammut, F. P. He, A. Lammas. Efficient path evaluation for AUVs using adaptive B-spline approximation. In Proceedings of Oceans, IEEE, Honolulu, USA, 2012. DOI: https://doi.org/10.1109/OCEANS.2012.6405066.

    Google Scholar 

  103. [103]

    Z. Zeng, K. Sammut, L. Lian, F. P. He, A. Lammas, Y. H. Tang. A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robotics and Autonomous Systems, vol. 82, pp. 61–72, 2016. DOI: https://doi.org/10.1016/j.robot.2016.03.011.

    Article  Google Scholar 

  104. [104]

    P. Yao, S. Q. Zhao. Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current (June 2018). IEEE Access, vol. 6, pp. 42914–42916, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2861468.

    Google Scholar 

  105. [105]

    Y. M. Li, H. Huang, Y. Xu, G. C. Zhang, J. Y. Li, H. D. Qin. Cognition-based hybrid path planning for autonomous underwater vehicle target following. International Journal of Advanced Robotic Systems, vol. 16, no. 4, pp. 1–11, 2019. DOI: https://doi.org/10.1177/1729881419857554.

    Article  Google Scholar 

  106. [106]

    D. Ferguson, M. Likhachev, A. Stentz. A guide to heuristic-based path planning. In Proceedings of International Conference on Automated Planning and Scheduling, Jerusalem, Israel, pp. 9–18, 2005.

    Google Scholar 

  107. [107]

    D. Ferguson, A. Stentz. Anytime RRTs. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 5369–5375, 2006. DOI: https://doi.org/10.1109/IROS.2006.282100.

    Google Scholar 

  108. [108]

    E. Hernández, M. Carreras, P. Ridao, A path planning algorithm for an AUV guided with homotopy classes. In Proceedings of the 21st International Conference on Automated Planning and Scheduling, Freiburg, Germany, pp. 82–89, 2011.

    Google Scholar 

  109. [109]

    T. Ma, Y. Li, Y. Q. Jiang, R. P. Wang, Z. Cong, Y. S. Gong. A dynamic path planning method for terrain-aided navigation of autonomous underwater vehicles. Measurement Science and Technology, vol. 29, no. 9, Article number 095105, 2018. DOI: https://doi.org/10.1088/1361-6501/aad466.

    Google Scholar 

  110. [110]

    E. Vidal, M. Moll, N. Palomeras, J. D. Hernández, M. Carreras, L. E. Kavraki. Online multilayered motion planning with dynamic constraints for autonomous underwater vehicles. In Proceedings of International Conference on Robotics and Automation, IEEE, Montreal, Canada, pp. 8936–8942, 2019. DOI: https://doi.org/10.1109/ICRA.2019.8794009.

    Google Scholar 

  111. [111]

    D. R. Thompson, S. Chien, Y. Chao, P. Li, B. Cahill, J. Levin, M. Meisinger. Spatiotemporal path planning in strong, dynamic, uncertain currents. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 4778–4783, 2010. DOI: https://doi.org/10.1109/ROBOT.2010.5509249.

    Google Scholar 

  112. [112]

    M. Soulignac. Feasible and optimal path planning in strong current fields. IEEE Transactions on Robotics, vol. 27, no. 1, pp. 89–98, 2011. DOI: https://doi.org/10.1109/TRO.2010.2085790.

    Article  Google Scholar 

  113. [113]

    M. Z. Yan, D. Q. Zhu, S. X. Yang, S. X. Anovel 3-D bioinspired neural network model for the path planning of an AUV in underwater environments. Intelligent Automation & Soft Computing, vol. 19, no. 4, pp. 555–566, 2013. DOI: https://doi.org/10.1080/10798587.2013.869114.

    Article  Google Scholar 

  114. [114]

    J. J. Ni, L. Y. Wu, P. F. Shi, S. X. Yang. A dynamic bioinspired neural network based real-time path planning method for autonomous underwater vehicles. Computational Intelligence and Neuroscience, vol. 2017, Article number 9269742, 2017. DOI: https://doi.org/10.1155/2017/9269742.

    Article  Google Scholar 

  115. [115]

    M. Morin, I. Abi-Zeid, Y. Petillot, C. G. Quimper. A hybrid algorithm for coverage path planning with imperfect sensors. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 5988–5993, 2013. DOI: https://doi.org/10.1109/IROS.2013.6697225.

    Google Scholar 

  116. [116]

    A. Bagnitckii, A. Inzartsev, A. Pavin. Planning and correction of the AUV coverage path in real time. In Proceedings of IEEE Underwater Technology, IEEE, Busan, South Korea, 2017. DOI: https://doi.org/10.1109/UT.2017.7890299.

    Google Scholar 

  117. [117]

    D. Q. Zhu, C. Tian, B. Sun, C. M. Luo. Complete coverage path planning of autonomous underwater vehicle based on GBNN algorithm. Journal of Intelligent & Robotic Systems, vol. 94, no. 1, pp. 237–249, 2019. DOI: https://doi.org/10.1007/s10846-018-0787-7.

    Article  Google Scholar 

  118. [118]

    G. Antonelli, S. Chiaverini, N. Sarkar, M. West. Adaptive control of an autonomous underwater vehicle: Experimental results on ODIN. IEEE Transactions on Control Systems Technology, vol. 9, no. 5, pp. 756–765, 2001. DOI: https://doi.org/10.1109/87.944470.

    Article  Google Scholar 

  119. [119]

    Z. J. Li, C. G. Yang, N. Ding, S. Bogdan, T. Ge. Robust adaptive motion control for underwater remotely operated vehicles with velocity constraints. International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 421–429, 2012. DOI: https://doi.org/10.1007/s12555-012-0222y.

    Article  Google Scholar 

  120. [120]

    B. K. Sahu, B. Subudhi. Adaptive tracking control of an autonomous underwater vehicle. International Journal of Automation and Computing, vol. 11, no. 3, pp. 299–307, 2014. DOI: https://doi.org/10.1007/s11633-014-0792-7.

    Article  Google Scholar 

  121. [121]

    Z. Zeng, A. Lammas, K. Sammut, F. P. He, Y. H. Tang. Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Engineering, vol. 91, pp. 181–195, 2014. DOI: https://doi.org/10.1016/j.oceaneng.2014.09.001.

    Article  Google Scholar 

  122. [122]

    Z. Zeng, L. Lian, K. Sammut, F. P. He, Y. H. Tang, A. Lammas. A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Engineering, vol. 110, pp. 303–313, 2015. DOI: https://doi.org/10.1016/j.oceaneng.2015.10.007.

    Article  Google Scholar 

  123. [123]

    Z. Zeng, K. Sammut, A. Lammas, F. P. He, Y. H. Tang. Imperialist competitive algorithm for AUV path planning in a variable ocean. Applied Artificial Intelligence, vol. 29, no. 4, pp. 402–420, 2015. DOI: https://doi.org/10.1080/08839514.2015.1004614.

    Article  Google Scholar 

  124. [124]

    R. S. Yu, Z. Y. Shi, C. X. Huang, T. L. Li, Q. X. Ma. Deep reinforcement learning based optimal trajectory tracking control of autonomous underwater vehicle. In Proceedings of the 36th Chinese Control Conference, IEEE, Dalian, China, pp. 4958–4965, 2017. DOI: https://doi.org/10.23919/ChiCC.2017.8028138.

    Google Scholar 

  125. [125]

    Y. S. Sun, J. H. Cheng, G. C. Zhang, H. Xu. Mapless motion planning system for an autonomous underwater vehicle using policy gradient-based deep reinforcement learning. Journal of Intelligent & Robotic Systems, Online First. DOI: https://doi.org/10.1007/s10846-019-01004-2.

    Article  Google Scholar 

  126. [126]

    B. Das, S. Das, C. S. Das. Efficacy of multiband OFDM approach in high data rate ultra WideBand WPAN physical layer standard using realistic channel models. International Journal of Computer Applications, vol. 2, no. 2, pp. 81–87, 2010. DOI: https://doi.org/10.5120/621-889.

    Article  Google Scholar 

  127. [127]

    B. Das, C. S. Das, S. Das. Interference cancellation schemes in UWB systems used in wireless personal area network based on wavelet based pulse spectral shaping and transmitted reference UWB using AWGN channel model. International Journal of Computer Applications, vol. 2, no. 2, pp. 88–92, 2010. DOI: https://doi.org/10.5120/620-890.

    Article  Google Scholar 

  128. [128]

    D. J. Stilwell, B. E. Bishop. Platoons of underwater vehicles. IEEE Control Systems Magazine, vol. 20, no. 6, pp. 45–52, 2000. DOI: https://doi.org/10.1109/37.887448.

    Article  Google Scholar 

  129. [129]

    B. Jouvencel, V. Creuze, P. Baccou. A new method for multiple AUV coordination: A reactive approach. In Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation, IEEE, Antibes-Juan les Pins, France, pp. 51–55, 2001. DOI: https://doi.org/10.1109/ETFA.2001.996353.

    Google Scholar 

  130. [130]

    E. H. Turner, T. L. Briggs. Responding to unanticipated goals when planning travel for autonomous underwater vehicles. In Proceedings of the 10th Conference on Artificial Intelligence for Applications, IEEE, San Antonia, USA, pp. 493–494, 1994. DOI: https://doi.org/10.1109/CAIA.1994.323623.

    Google Scholar 

  131. [131]

    Y. I. Lee, Y. G. Kim, L. J. Kohout. An intelligent collision avoidance system for AUVs using fuzzy relational products. Information Sciences, vol. 158, pp. 209–232, 2004. DOI: https://doi.org/10.1016/j.ins.2003.07.003.

    Article  Google Scholar 

  132. [132]

    L. D. Bui, Y. G. Kim. An obstacle-avoidance technique for autonomous underwater vehicles based on BKproducts of fuzzy relation. Fuzzy Sets and Systems, vol. 157, no. 4, pp. 560–577, 2006. DOI: https://doi.org/10.1016/j.fss.2005.05.042.

    MathSciNet  Article  Google Scholar 

  133. [133]

    R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer, J. Hespanha. Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures. In Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, USA, pp. 4345–4350, 2006. DOI: https://doi.org/10.1109/CDC.2006.376989.

    Google Scholar 

  134. [134]

    A. P. Aguiar, R. Ghabcheloo, A. M. Pascoal, C. Silvestre. Coordinated path-following control of multiple autonomous underwater vehicles. In Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, Lisbon, Portugal, vol. 17, pp. 1–7, 2007.

    Google Scholar 

  135. [135]

    R. Ghabcheloo, I. Kaminer, A. P. Aguiar, A. Pascoal. A general framework for multiple vehicle time-coordinated path following control. In Proceedings of American Control Conference, IEEE, St. Louis, USA, pp. 3071–3076, 2009. DOI: https://doi.org/10.1109/ACC.2009.5160564.

    Google Scholar 

  136. [136]

    I. A. F. Ihle, M. Arcak, T. I. Fossen. Passivity-based designs for synchronized path-following. Automatica, vol. 43, no. 9, pp. 1508–1518, 2007. DOI: https://doi.org/10.1016/j.automatica.2007.02.018.

    MathSciNet  MATH  Article  Google Scholar 

  137. [137]

    D. B. Fogel, L. J. Fogel. Optimal routing of multiple autonomous underwater vehicles through evolutionary programming. In Proceedings of Symposium on Autonomous Underwater Vehicle Technology, IEEE, Washington, USA, pp. 44–47, 1990. DOI: https://doi.org/10.1109/AUV.1990.110436.

    Google Scholar 

  138. [138]

    X. Wu, Z. Feng, J. Zhu, R. Allen. GA-based path planning for multiple AUVs. International Journal of Control, vol. 80, no. 7, pp. 1180–1185, 2007. DOI: https://doi.org/10.1080/00207170601145289.

    MATH  Article  Google Scholar 

  139. [139]

    S. Mahmoud Zadeh, D. M. W. Powers, K. Sammut, A. M. Yazdani. A novel versatile architecture for autonomous underwater vehicle’s motion planning and task assignment. Soft Computing, vol. 22, no. 5, pp. 1687–1710, 2018. DOI: https://doi.org/10.1007/s00500-016-2433-2.

    Article  Google Scholar 

  140. [140]

    Y. S. Jung, K. W. Lee, S. Y. Lee, M. H. Choi, B. H. Lee. An efficient underwater coverage method for multi-AUV with sea current disturbances. International Journal of Control, Automation and Systems, vol. 7, no. 4, pp. 615–629, 2009. DOI: https://doi.org/10.1007/s12555-009-0412-4.

    Article  Google Scholar 

  141. [141]

    J. Almeida, C. Silvestre, A. Pascoal. Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty. International Journal of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1549–1565, 2010. DOI: https://doi.org/10.1002/rnc.1526.

    MathSciNet  MATH  Article  Google Scholar 

  142. [142]

    X. B. Xiang, C. Liu, L. Lapierre, B. Jouvencel. Synchronized path following control of multiple homogenous underactuated AUVs. Journal of Systems Science and Complexity, vol. 25, no. 1, pp. 71–89, 2012. DOI: https://doi.org/10.1007/s11424-012-0109-2.

    MathSciNet  MATH  Article  Google Scholar 

  143. [143]

    B. Rhoads, I. Mezic, A. C. Poje. Minimum time heading control of underpowered vehicles in time-varying ocean currents. Ocean Engineering, vol. 66, pp. 12–31, 2013. DOI: https://doi.org/10.1016/j.oceaneng.2013.03.012.

    Article  Google Scholar 

  144. [144]

    B. Das, B. Subudhi, B. B. Pati. Adaptive sliding mode formation control of multiple underwater robots. Archives of Control Sciences, vol. 24, no. 4, pp. 515–543, 2014. DOI: https://doi.org/10.2478/acsc-2014-0028.

    MathSciNet  MATH  Article  Google Scholar 

  145. [145]

    E. Peymani, T. I. Fossen. Path following of underwater robots using Lagrange multipliers. Robotics and Autonomous Systems, vol. 67, pp. 44–52, 2015. DOI: https://doi.org/10.1016/j.robot.2014.10.011.

    Article  Google Scholar 

  146. [146]

    A. Matos, N. Cruz, A. Martins, F. L. Pereira. Development and implementation of a low-cost LBL navigation system for an AUV. In Proceedings of Riding the Crest into the 21st Century Conference and Exhibition, IEEE, Seattle, USA, pp. 774–779, 1999. DOI: https://doi.org/10.1109/OCEANS.1999.804906.

    Google Scholar 

  147. [147]

    L. L. Whitcomb, D. R. Yoerger, H. Singh, J. Howland. Combined Doppler/LBL based navigation of underwater vehicles. Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology, Durham, USA, pp. 1–7, 1999.

    Google Scholar 

  148. [148]

    J. R. Stack, C. M. Smith, J. C. Hyland. Efficient reacquisition path planning for multiple autonomous underwater vehicles. In Proceedings of Oceans ’04 MTS/IEEE Techno-Ocean ’04, IEEE, Kobe, Japan, pp. 1564–1569, 2004. DOI: https://doi.org/10.1109/OCEANS.2004.1406355.

    Google Scholar 

  149. [149]

    P. Rigby, O. Pizarro, S. B. Williams. Towards geo-referenced AUV navigation through fusion of USBL and DVL measurements. In Proceedings OCEANS 2006, IEEE, Boston, USA, 2006. DOI: https://doi.org/10.1109/OCEANS.2006.306898.

    Google Scholar 

  150. [150]

    B. V. M. Carvajal, D. A. S. Bueno, R. V. Mejía. Recent advances in navigation of underwater remotely operated vehicles. Revista Facultad de Ingeniería, vol. 69, pp. 167–180, 2014.

    Google Scholar 

  151. [151]

    J. C. Crowell. Underwater Acoustic Positioning System and Method, U.S. Patent 8009516B2, Aug 2011.

    Google Scholar 

  152. [152]

    A. Alcocer, P. Oliveira, A. Pascoal. Study and implementation of an EKF GIB-based underwater positioning system. Control Engineering Practice, vol. 15, no. 6, pp. 689–701, 2007. DOI: https://doi.org/10.1016/j.conengprac.2006.04.001.

    Article  Google Scholar 

  153. [153]

    L. Paull, M. Seto, J. J. Leonard. Decentralized cooperative trajectory estimation for autonomous underwater vehicles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Chicago, USA, pp. 184–191, 2014. DOI: https://doi.org/10.1109/IROS.2014.6942559.

    Google Scholar 

  154. [154]

    L. Medagoda, S. B. Williams, O. Pizarro, J. C. Kinsey, M. V. Jakuba. Mid-water current aided localization for autonomous underwater vehicles. Autonomous Robots, vol. 40, no. 7, pp. 1207–1227, 2016. DOI: https://doi.org/10.1007/s10514016-9547-3.

    Article  Google Scholar 

  155. [155]

    E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer, D. M. Fratantoni. Multi-AUV control and adaptive sampling in Monterey Bay. IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 935–948, 2006. DOI: https://doi.org/10.1109/JOE.2006.880429.

    Article  Google Scholar 

  156. [156]

    M. Barisic, Z. Vukic, N. Miskovic. Kinematic simulative analysis of virtual potential field method for AUV trajectory planning. In Proceedings of Mediterranean Conference on Control & Automation, IEEE, Athens, Greece, pp. 1–6, 2007. DOI: https://doi.org/10.1109/MED.2007.4433718.

    Google Scholar 

  157. [157]

    L. C. Zhang, M. Y. Liu, D. M. Xu, W. S. Yan. Cooperative localization and navigation for multiple UUVs. Journal of System Simulation, vol. 20, no. 19, pp. 5342–5344, 2008.

    Google Scholar 

  158. [158]

    F. Sun, W. Xu, L. L. Jin, J. L. Li. Path planning of autonomous underwater vehicles for optimal environmental sampling. In Proceedings OCEANS’10 IEEE Sydney, IEEE, Sydney, Australia, 2010. DOI: https://doi.org/10.1109/OCEANSSYD.2010.5603984.

    Google Scholar 

  159. [159]

    B. Allotta, L. Chisci, R. Costanzi, F. Fanelli, C. Fantacci, E. Meli, A. Ridolfi, A. Caiti, F. Di Corato, D. Fenucci. A comparison between EKF-based and UKF-based navigation algorithms for AUVs localization. In Proceedings OCEANS 2015- Genova, IEEE, Genoa, Italy, 2015. DOI: https://doi.org/10.1109/OCEANS-Genova.2015.7271681.

    Google Scholar 

  160. [160]

    B. Allotta, A. Caiti, R. Costanzi, F. Fanelli, E. Meli, A. Ridolfi. Development and online validation of an UKFbased navigation algorithm for AUVs. IFAC-PapersOnLine, vol. 49, no. 15, pp. 69–74, 2016. DOI: https://doi.org/10.1016/j.ifacol.2016.07.711.

    Article  Google Scholar 

  161. [161]

    B. Allotta, A. Caiti, R. Costanzi, F. Fanelli, D. Fenucci, E. Meli, A. Ridolfi. A new AUV navigation system exploiting unscented Kalman filter. Ocean Engineering, vol. 113, pp. 121–132, 2016. DOI: https://doi.org/10.1016/j.oceaneng.2015.12.058.

    Article  Google Scholar 

  162. [162]

    B. Das, B. Subudhi, B. B. Pati. Employing nonlinear observer for formation control of AUVs under communication constraints. International Journal of Intelligent Unmanned Systems, vol. 3, no. 2–3, pp. 122–155, 2015. DOI: https://doi.org/10.1108/IJIUS-04-2015-0004.

    Article  Google Scholar 

  163. [163]

    A. P. Aguiar, J. Almeida, M. Bayat, B. Cardeira, R. Cunha, A. Häusler, P. Maurya, A. Oliveira, A. Pascoal, A. Pereira, M. Rufino, L. Sebastião, C. Silvestre, F. Vanni. Cooperative control of multiple marine vehicles theoretical challenges and practical issues. IFAC Proceedings Volumes, vol. 42, no. 18, pp. 412–417, 2009. DOI: https://doi.org/10.3182/20090916-3-BR-3001.0072.

    Article  Google Scholar 

  164. [164]

    B. Chow. Assigning Closely Spaced Targets to Multiple Autonomous Underwater Vehicles, Master dissertation, University of Waterloo, Canada, 2009.

    Google Scholar 

  165. [165]

    A. Bahr, J. J. Leonard, M. F. Fallon. Cooperative localization for autonomous underwater vehicles. International Journal of Robotics Research, vol. 28, no. 6, pp. 714–728, 2009. DOI: https://doi.org/10.1177/0278364908100561.

    Article  Google Scholar 

  166. [166]

    G. Papadopoulos, M. F. Fallon, J. J. Leonard, N. M. Patrikalakis. Cooperative localization of marine vehicles using nonlinear state estimation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei, Taiwan, China, pp. 4874–4879, 2010. DOI: https://doi.org/10.1109/IROS.2010.5650250.

    Google Scholar 

  167. [167]

    J. Binney, A. Krause, G. S. Sukhatme. Informative path planning for an autonomous underwater vehicle. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 4791

  168. [168]

    H. W. Jia, J. Zhao. Output regulation of multiple heterogeneous switched linear systems. International Journal of Automation and Computing, vol. 15, no. 4, pp. 492–499, 2018. DOI: https://doi.org/10.1007/s11633-017-1058-y.

    Article  Google Scholar 

  169. [169]

    L. C. Zhang, D. M. Xu, M. Y. Liu. Cooperative navigation algorithm for two leaders GUUV. In Proceedings of the 4th International Conference on Intelligent Computation Technology and Automation, IEEE, Shenzhen, China, pp. 970–973, 2011. DOI: https://doi.org/10.1109/ICICTA.2011.528.

    Google Scholar 

  170. [170]

    B. K. Sahu, M. M. Gupta, B. Subudhi. Fuzzy separation potential function based flocking control of multiple AUVs. In Proceedings of Joint IFSA World Congress and NAFIPS Annual Meeting, IEEE, Edmonton, Canada, pp. 1429–1434, 2013. DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608611.

    Google Scholar 

  171. [171]

    B. Das, B. Subudhi, B. B. Pati. Co-operative control of a team of autonomous underwater vehicles in an obstaclerich environment. Journal of Marine Engineering & Technology, vol. 15, no. 3, pp. 135–151, 2016. DOI: https://doi.org/10.1080/20464177.2016.1247636.

    Article  Google Scholar 

  172. [172]

    B. Das, B. Subudhi, B. B. Pati. Co-operative control coordination of a team of underwater vehicles with communication constraints. Transactions of the Institute of Measurement and Control, vol. 38, no. 4, pp. 463–481, 2016. DOI: https://doi.org/10.1177/0142331215590010.

    Article  Google Scholar 

  173. [173]

    A. S. Gadre, D. J. Stilwell. Toward underwater navigation based on range measurements from a single location. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, New Orleans, USA, pp. 4472–4477, 2004. DOI: https://doi.org/10.1109/ROBOT.2004.1302422.

    Google Scholar 

  174. [174]

    G. Rui, M. Chitre. Cooperative positioning using rangeonly measurements between two AUVs. In Proceedings of OCEANS’10 IEEE Sydney, IEEE, Sydney, Australia, 2010. DOI: https://doi.org/10.1109/OCEANSSYD.2010.5603615.

    Google Scholar 

  175. [175]

    M. Chitre. Path planning for cooperative underwater range-only navigation using a single beacon. In Proceedings of International Conference on Autonomous and Intelligent Systems, IEEE, Povoa de Varzim, Portugal, 2010. DOI: https://doi.org/10.1109/AIS.2010.5547044.

    Google Scholar 

  176. [176]

    M. F. Fallon, G. Papadopoulos, J. J. Leonard, N. M. Patrikalakis. Cooperative AUV navigation using a single maneuvering surface craft. International Journal of Robotics Research, vol. 29, no. 12, pp. 1461–1474, 2010. DOI: https://doi.org/10.1177/0278364910380760.

    Article  Google Scholar 

  177. [177]

    M. F. Fallon, M. Kaess, H. Johannsson, J. J. Leonard. Efficient AUV navigation fusing acoustic ranging and sidescan sonar. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Shanghai, China, pp. 2398–2405, 2011. DOI: https://doi.org/10.1109/ICRA.2011.5980302.

    Google Scholar 

  178. [178]

    T. Y. Teck, M. Chitre. Single beacon cooperative path planning using cross-entropy method. In Proceedings of OCEANS’11 MTS/IEEE Kona, IEEE, Waikoloa, USA, 2011. DOI: https://doi.org/10.23919/OCEANS.2011.6107044.

    Google Scholar 

  179. [179]

    Y. T. Tan, R. Gao, M. Chitre. Cooperative path planning for range-only localization using a single moving beacon. IEEE Journal of Oceanic Engineering, vol. 39, no. 2, pp. 371–385, 2014. DOI: https://doi.org/10.1109/JOE.2013.2296361.

    Article  Google Scholar 

  180. [180]

    C. F. Wang, L. Wei, Z. H. Wang, M. Song, N. Mahmoudian. Reinforcement learning-based multi-AUV adaptive trajectory planning for underice field estimation. Sensors, vol. 18, no. 11, Article number 3859, 2018. DOI: https://doi.org/10.3390/s18113859.

    Google Scholar 

  181. [181]

    J. Gimenez, A. Amicarelli, J. M. Toibero, F. di Sciascio, R. Carelli. Iterated conditional modes to solve simultaneous localization and mapping in Markov random fields context. International Journal of Automation and Computing, vol. 15, no. 3, pp. 310–324, 2018. DOI: https://doi.org/10.1007/s11633-017-1109-4.

    Article  Google Scholar 

  182. [182]

    A. Bahr, J. J. Leonard, A. Martinoli. Dynamic positioning of beacon vehicles for cooperative underwater navigation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Algarve, Portugal, pp. 3760–3767, 2012. DOI: https://doi.org/10.1109/IROS.2012.6386168.

    Google Scholar 

  183. [183]

    A. Khan, I. Noreen, Z. Habib. On complete coverage path planning algorithms for non-Holonomic mobile robots: Survey and challenges. Journal of Information Science and Engineering, vol. 33, no. 1, pp. 101–121, 2017. DOI: https://doi.org/10.6688/JISE.2017.33.1.7.

    MathSciNet  Google Scholar 

  184. [184]

    T. Matsuda, T. Maki, T. Sakamaki, T. Ura. Performance analysis on a navigation method of multiple AUVs for wide area survey. Marine Technology Society Journal, vol. 46, no. 2, pp. 45–55, 2012. DOI: https://doi.org/10.4031/MTSJ.46.2.6.

    Article  Google Scholar 

  185. [185]

    T. Matsuda, T. Maki, Y. Sato, T. Sakamaki. Cooperative navigation method of multiple autonomous underwater vehicles for wide seafloor survey-Sea experiment with two AUVs. In OCEANS 2014-Taipei, IEEE, Taipei, China, 2014. DOI: https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964386.

    Google Scholar 

  186. [186]

    J. M. Walls, R. M. Eustice. Toward informative planning for cooperative underwater localization. In Proceedings of 2014 Oceans - St. John’s, IEEE, St. John’s, Canada, 2014. DOI: https://doi.org/10.1109/OCEANS.2014.7003099.

    Google Scholar 

  187. [187]

    A. Zhu, S. X. Yang. A neural network approach to dynamic task assignment of multirobots. IEEE Transactions on Neural Networks, vol. 17, no. 5, pp. 1278–1287, 2006. DOI: https://doi.org/10.1109/TNN.2006.875994.

    Article  Google Scholar 

  188. [188]

    H. Li, S. X. Yang, M. L. Seto. Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 39, no. 4, pp. 410–419, 2009. DOI: https://doi.org/10.1109/TSMCC.2009.2020789.

    Article  Google Scholar 

  189. [189]

    K. Shojaei. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing, vol. 194, pp. 372–384, 2016. DOI: https://doi.org/10.1016/j.neucom.2016.02.041.

    Article  Google Scholar 

  190. [190]

    X. D. Kang, H. L. Xu, X. S. Feng. Fuzzy logic based behavior fusion for multi-AUV formation keeping in uncertain ocean environment. In Proceedings of OCEANS 2009, IEEE, Biloxi, USA, 2009. DOI: https://doi.org/10.23919/OCEANS.2009.5422361.

    Google Scholar 

  191. [191]

    M. Abbasi, M. Danesh, M. Ghayour. A path fuzzy planner for autonomous underwater vehicles to avoid moving unknown obstacles. In Proceedings of IEEE International Conference on Mechatronics and Automation, IEEE, Xi’an, China, pp. 1264–1269, 2010. DOI: https://doi.org/10.1109/ICMA.2010.5588564.

    Google Scholar 

  192. [192]

    J. Li, R. Zhang, Y. Yang. AUV Search Target Research Based Meta-heuristic Algorithm. Advanced Science and Technology Letters, vol. 79, pp. 22–26, 2014.

    Article  Google Scholar 

  193. [193]

    Z. Zeng, A. Lammas, K. Sammut, F. P. He, Y. H. Tang, Q. J. Ji. Path planning for rendezvous of multiple AUVs operating in a variable ocean. In Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, IEEE, Hong Kong, China, pp. 451–456, 2014. DOI: https://doi.org/10.1109/CYBER.2014.6917506.

    Google Scholar 

  194. [194]

    Z. Zeng, K. Sammut, A. Lammas, F. P. He, Y. H. Tang. Efficient path re-planning for AUVs operating in spatiotemporal currents. Journal of Intelligent & Robotic Systems, vol. 79, no. 1, pp. 135–153, 2015. DOI: https://doi.org/10.1007/s10846-014-0104-z.

    Article  Google Scholar 

  195. [195]

    D. Q. Zhu, H. Huang, S. X. Yang. Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace. IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 504–514, 2013. DOI: https://doi.org/10.1109/TSMCB.2012.2210212.

    Article  Google Scholar 

  196. [196]

    H. Huang, D. Q. Zhu, F. Ding. Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment. Journal of Intelligent & Robotic Systems, vol. 74, no. 3–4, pp. 999–1012, 2014. DOI: https://doi.org/10.1007/s10846-013-9870-2.

    Article  Google Scholar 

  197. [197]

    X. Cao, D. Q. Zhu. Multi-AUV underwater cooperative search algorithm based on biological inspired neurodynamics model and velocity synthesis. The Journal of Navigation, vol. 68, no. 6, pp. 1075–1087, 2015. DOI: https://doi.org/10.1017/S0373463315000351.

    Article  Google Scholar 

  198. [198]

    X. Cao, D. Q. Zhu, S. X. Yang. Multi-AUV target searching under ocean current based on PPSO and velocity synthesis algorithm. Underwater Technology, vol. 33, no. 1, pp. 31–39, 2015. DOI: https://doi.org/10.3723/ut.33.031.

    Article  Google Scholar 

  199. [199]

    M. Y. Liu, B. G. Xu, X. G. Peng. Cooperative path planning for multi-AUV in time-varying ocean flows. Journal of Systems Engineering and Electronics, vol. 27, no. 3, pp. 612–618, 2016. DOI: https://doi.org/10.1109/JSEE.2016.00065.

    Article  Google Scholar 

  200. [200]

    Y. Y. Deng, P. P. J. Beaujean, E. An, E. Carlson. Task allocation and path planning for collaborative autonomous underwater vehicles operating through an underwater acoustic network. Journal of Robotics, vol. 2013, Article number 483095, 2013. DOI: https://doi.org/10.1155/2013/483095.

    Article  Google Scholar 

  201. [201]

    J. D. Hernández, G. Vallicrosa, E. Vidal, È. Pairet, M. Carreras, P. Rida. On-line 3D path planning for closeproximity surveying with AUVs. IFAC-PapersOnLine, vol. 48, no. 2, pp. 50–55, 2015. DOI: https://doi.org/10.1016/j.ifacol.2015.06.009.

    Article  Google Scholar 

  202. [202]

    R. X. Cui, Y. Li, W. S. Yan. Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 7, pp. 993–1004, 2016. DOI: https://doi.org/10.1109/TSMC.2015.2500027.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bidyadhar Subudhi.

Additional information

Madhusmita Panda received the B. Tech. degree in electronics and instrumentation engineering from the Biju Pat-naik University of Technology India in 2003 and M. Tech. degree in computer science engineering from the Biju Patnaik University of Technology, India in 2006. She is a Ph. D. degree candidate in control under communication constraints in Department of Electronics and Telecommunications Engineering, Veer Surendra Sai University of Technology Odisha, India. She is currently working as assistant professor at Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology Odisha, India. She is a life time member of Institution of Engineers (India) (IEI) and Indian Society for Technical Education (ISTE).

Her research interests include formation control of autonomous underwater vehicles, robotics and wireless communication.

Bikramaditya Das received the B. Tech degree in electronics and telecommunications engineering from the Biju Patnaik University of Technology, India in 2017, M. Tech. degree in wireless communication from Department of Electrical Engineering, National Institute of Technology Rourkela, India in 2010, and the Ph. D. degree in control under communication constraints from Department of Electrical Engineering, Veer Surendra Sai University of Technology Odisha, India in 2016. He is currently working as assistant professor at Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology Odisha, India. He is an associate member of IEI.

His research interests include formation control of autonomous underwater vehicles, robotics and wireless communication.

Bidyadhar Subudhi has received a Bachelor Degree in Electrical Engineering from National Institute of Technology, India in 1988, M. Tech. degree in Control & Instrumentation from IIT Delhi in 1994 and Ph. D degree in control system engineering M from University of Sheffield, UK in 2003. Currently he serves as professor and head, School of Electrical Sciences, Indian Institute of Technology, India. He is a Fellow of the Institution of Engineering & Technology (IET), Telecommunication Engineers (IETE), Institution of Engineers(IE) and Senior Member of Institute of Electrical and Electronics Engineers (IEEE).

His research interests include adaptive control, estimation and filtering application to power system, control design for photovoltaic power system, micro grid system and autonomous underwater vehicles.

Bibhuti Bhusan Pati is currently working as a professor in the Department of Electrical Engineering, Veer Surendra Sai University of Technology Odisha, India. He is the Fellow of Institution of Engineers, member of Indian Society for Technical Education (ISTE), Bigyan Academy, and Engineering Congress. He has published more than 150 papers in reputed journals and conferences. He is the investigator of many All India Council for Technical Education (AICTE) sponsored projects.

His research of interests include control system and applications to power system.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panda, M., Das, B., Subudhi, B. et al. A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles. Int. J. Autom. Comput. 17, 321–352 (2020). https://doi.org/10.1007/s11633-019-1204-9

Download citation

Keywords

  • Autonomous underwater vehicle (AUV)
  • cooperative motion
  • formation control
  • optimization
  • path planning (PP)