Skip to main content
Log in

The vanadium isotopic composition of L ordinary chondrites

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ51V of − 1.25‰ ± 0.38‰ (2SD, n = 11), which is ~ 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from − 1.76‰ to − 1.29‰, whereas the δ51V of equilibrated chondrites vary from − 1.37‰ to − 1.08‰. δ51V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balsiger H, Geiss J, Lipschutz ME (1969) Vanadium isotopic composition in meteoritic and terrestrial matter. Earth Planet Sci Lett 6(2):117–122

    Article  Google Scholar 

  • Balsiger H et al (1976) Vanadium isotopic composition and contents in gas-rich meteorites. Earth Planet Sci Lett 28(3):379–384

    Article  Google Scholar 

  • Burkhardt C et al (2017) In search of the Earth-forming reservoir: mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteorit Planet Sci 52:807–826

    Article  Google Scholar 

  • Ciesla FJ, Charnley SB (2006) The physics and chemistry of nebular evolution. Meteorites Early Solar Syst II 943:209–230

    Google Scholar 

  • Clayton RN (2003) Oxygen isotopes in the Solar System. Space Sci Rev 106(1–4):19–32

    Article  Google Scholar 

  • Clayton RN et al (1991) Oxygen isotope studies of ordinary chondrites. Geochim Cosmochim Acta 55(8):2317–2337

    Article  Google Scholar 

  • Crozaz G, Wadhwa M (2001) The terrestrial alteration of saharan shergottites dar al gani 476 and 489: a case study of weathering in a hot desert environment. Geochim Cosmochim Acta 65(6):971–977

    Article  Google Scholar 

  • Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541(7638):521

    Article  Google Scholar 

  • Dauphas N et al (2014) Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet Sci Lett 407:96–108

    Article  Google Scholar 

  • Elardo SM, Shahar A (2017) Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat Geosci 10(4):317–321

    Article  Google Scholar 

  • Gounelle M et al (2008) The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys J 640(2):1163–1170

    Article  Google Scholar 

  • Graham AL, Bevan AWR, Hutchison R (1987) Book review: catalogue of meteorites./British Museum, 1985. J Br Astron Assoc 97:233

    Google Scholar 

  • Hofmann BA (2010) Meteorites: messengers from the early solar system. Chimia 64(10):736–740

    Article  Google Scholar 

  • Huang S, Jacobsen SB (2016) Calcium isotopic compositions of chondrites. Geochim Cosmochim Acta 201:364–376

    Article  Google Scholar 

  • Huang J-H et al (2015) Vanadium: global (bio) geochemistry. Chem Geol 417:68–89

    Article  Google Scholar 

  • Hutchison R (2004) Meteorites: a petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50(1):139–155

    Article  Google Scholar 

  • Kallemeyn GW et al (1989) Ordinary chondrites: bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships. Geochim Cosmochim Acta 53(10):2747–2767

    Article  Google Scholar 

  • Kessel R, Beckett JR, Stolper EM (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature. Geochim Cosmochim Acta 71(7):1855–1881

    Article  Google Scholar 

  • Lipschutz ME, Balsiger H, Pelly IZ (1971) Vanadium isotopic composition and contents in lunar rocks and dust from the ocean of storms. Am J Community Psychol 37(1–2):47–61

    Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591(2):1220–1247

    Article  Google Scholar 

  • Luck JM, Othman DB, Albarède F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69(22):5351–5363

    Article  Google Scholar 

  • McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of short-lived (10)Be in a calcium-aluminum-rich inclusion from the allende meteorite. Science 289(5483):1334

    Article  Google Scholar 

  • McSween HY, Labotka TC (1993) Oxidation during metamorphism of the ordinary chondrites. Geochim Cosmochim Acta 57(5):1105–1114

    Article  Google Scholar 

  • Needham AW, Porcelli D, Russell SS (2009) An Fe isotope study of ordinary chondrites. Geochim Cosmochim Acta 73(24):7399–7413

    Article  Google Scholar 

  • Nielsen SG et al. (2018) Nucleosynthetic heterogeneity controls vanadium isotope variations in bulk chondrites. In: 49th Lunar and Planetary Science Conference

  • Nielsen SG, Prytulak J, Halliday AN (2009) Vanadium isotope ratios in meteorites: a new tool to investigate planetary and nebular processes. In: Lunar and Planetary Science Conference

  • Nielsen SG, Prytulak J, Halliday AN (2011) Determination of precise and accurate 51 V/50 V isotope ratios by MCICPMS, Part 1: chemical separation of vanadium and mass spectrometric protocols. Geostand Geoanal Res 35(3):293–306

    Article  Google Scholar 

  • Nielsen SG et al (2014) Vanadium isotopic difference between the silicate Earth and meteorites. Earth Planet Sci Lett 389:167–175

    Article  Google Scholar 

  • Nielsen SG, Sarafian AR, Owens JD (2015) Vanadium isotope heterogeneity of the solar system: new data for achondrites. In: Lunar and Planetary Science Conference

  • Nielsen SG, Owens JD, Horner TJ (2016) Analysis of high-precision vanadium isotope ratios by medium resolution MC-ICP-MS. J Anal At Spectrom 31(2):531–536

    Article  Google Scholar 

  • Nielsen SG, Magna T, Mezger K (2017) The vanadium isotopic composition of mars and evidence for solar system heterogeneity during planetary accretion. In: Lunar and Planetary Science Conference

  • Paniello RC et al (2012) Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochim Cosmochim Acta 86(6):76–87

    Article  Google Scholar 

  • Pelly IZ, Lipschutz ME, Balsiger H (1970) Vanadium isotopic composition and contents in chondrites. Geochim Cosmochim Acta 34(9):1033–1036

    Article  Google Scholar 

  • Prytulak J, Nielsen SG, Halliday AN (2011) Determination of precise and accurate 51 V/50 V isotope ratios by multi-collector ICP-MS, Part 2: isotopic composition of six reference materials plus the allende chondrite and verification tests. Geostand Geoanal Res 35(3):307–318

    Article  Google Scholar 

  • Prytulak J et al (2013) The stable vanadium isotope composition of the mantle and mafic lavas. Earth Planet Sci Lett 365(1):177–189

    Article  Google Scholar 

  • Qin L et al (2010) Contributors to chromium isotope variation of meteorites. Geochim Cosmochim Acta 74(3):1122–1145

    Article  Google Scholar 

  • Rubin AE (2000) Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Sci Rev 50(99):3–27

    Article  Google Scholar 

  • Rubin AE, Ziegler K, Young ED (2008) Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition. Geochim Cosmochim Acta 72(3):948–958

    Article  Google Scholar 

  • Saunier G et al (2010) Effect of hot desert weathering on the bulk-rock iron isotope composition of L6 and H5 ordinary chondrites. Meteorit Planet Sci 45(2):195–209

    Article  Google Scholar 

  • Schiller M, Bizzarro M, Fernandes VA (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555(7697):507–510

    Article  Google Scholar 

  • Schmitt AD (2016) Calcium stable isotope geochemistry. Springer, Berlin Heidelberg

    Google Scholar 

  • Schmus WRV, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31(5):747

    Article  Google Scholar 

  • Simon JI, Depaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289(3):457–466

    Article  Google Scholar 

  • Sossi PA et al (2017) Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nat Astron 1(4):0055

    Article  Google Scholar 

  • Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55(12):3845–3867

    Article  Google Scholar 

  • Teng FZ et al (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74(14):4150–4166

    Article  Google Scholar 

  • Valdes MC et al (2014) The nature of Earth’s building materials as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145

    Article  Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311(1):93–100

    Article  Google Scholar 

  • Wasson JT (1972) Formation of ordinary chondrites. Meteoritics 10(3):711–759

    Google Scholar 

  • Wlotzka F (1993) A weathering scale for the ordinary chondrites. Meteoritics 28(28):460

    Google Scholar 

  • Wu F et al (2016) Vanadium isotope measurement by MC-ICP-MS. Chem Geol 421:17–25

    Article  Google Scholar 

  • Wu F et al (2018) Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust. Earth Planet Sci Lett 493:128–139

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000), the National Science Foundation of China (41173077, 41776196, 41630206, and 41325011), the National Science and Technology Foundation Platform Project of Ministry of Science and Technology of China (2005DKA21406), and the 111 Project. We deeply appreciate constructive comments from Zhaofeng Zhang, and the Polar Research Institute of China for providing the samples. We thank Ke Zhu and Jia Liu for discussion and Shengyu Tian, Zhenhui Hou, and Jialong Liu for help with the analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingkui Miao or Fang Huang.

Additional information

The two corresponding authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Li, Ch., Qi, Y. et al. The vanadium isotopic composition of L ordinary chondrites. Acta Geochim 37, 501–508 (2018). https://doi.org/10.1007/s11631-018-0279-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0279-2

Keywords

Navigation