Skip to main content
Log in

Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Cenozoic adakitic rocks in the Gangdese changed from barren continental melts to ore-forming slab melts at ~ 23 Ma. The distribution and chemical characteristics of the ore-forming adakites point to an association with the Ninetyeast Ridge. The subduction of the thick, rigid Ninetyeast Ridge changed the geometry and rheology of the eastern Tibetan Plateau lithosphere and asthenosphere, restrained the eastward escape of asthenospheric mantle as well as continental fragments, and promoted the uplift and building of the Tibetan Plateau, which consequently changed the tectonic and climatic regimes in eastern Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitchison JC, Ali JR, Davis AM (2007) When and where did India and Asia collide? J Geophys Res. https://doi.org/10.1029/2006JB004706

  • Ballhaus C (1993) Oxidation states of the lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Article  Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Chung SL, Chu MF, Ji JQ, O’Reilly SY, Pearson NJ, Liu DY, Lee TY, Lo CH (2009) The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics 477:36–48

    Article  Google Scholar 

  • Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1:875–880

    Article  Google Scholar 

  • Coleman M, Hodges K (1995) Evidence for Tibetan Plateau uplift before 14-Myr ago from a new minimum age for east-west extension. Nature 374:49–52

    Article  Google Scholar 

  • Copley A, Avouac JP, Wernicke BP (2011) Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature 472:79–81

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Ding L, Spicer RA, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer TEV, Yue Y, Shukla A, Srivastava G, Khan MA, Bera S, Mehrotra R (2017) Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45:215–218

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Hall R, Morley CK (2004) Sundaland basins. In: Clift P, Wang P, Kuhnt W, Hayes D (eds) Continent-ocean interactions within east Asian marginal seas. American Geophysical Union, pp 55–85

  • Harrison TM, Copeland P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670

    Article  Google Scholar 

  • He YS, Li SG, Hoefs J, Huang F, Liu SA, Hou ZH (2011) Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta 75:3815–3838

    Article  Google Scholar 

  • Hou ZQ, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geol Rev 36:2–24

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS, Duan LF (2015) A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology. https://doi.org/10.1130/G36362.36361

    Google Scholar 

  • Hu Y-B, Liu J-Q, Ling M-X, Ding W, Liu Y, Zartman RE, Ma X-F, Liu D-Y, Zhang C-C, Sun S-J, Zhang L-P, Wu K, Sun W-D (2015) The formation of Qulong adakites and their relationship with porphyry copper deposit: geochemical constraints. Lithos. https://doi.org/10.1016/j.lithos.2014.1012.1025

    Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Article  Google Scholar 

  • Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685

    Article  Google Scholar 

  • Leloup PH, Lacassin R, Tapponnier P, Scharer U, Zhong DL, Liu XH, Zhang LS, Ji SC, Trinh PT (1995) The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics 251:3–84

    Article  Google Scholar 

  • Li C, Van der Hilst RD, Meltzer AS, Engdahl ER (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274:157–168

    Article  Google Scholar 

  • Licht A, van Cappelle M, Abels HA, Ladant JB, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lecuyer C, Terry D, Adriaens R, Boura A, Guo Z, Soe AN, Quade J, Dupont-Nivet G, Jaeger JJ (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513:501

    Article  Google Scholar 

  • Liu SA, Li SG, He Y, Huang F (2010) Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu–Au mineralization. Geochim Cosmochim Acta 74:7160–7178

    Article  Google Scholar 

  • Liu D, Zhao ZD, Zhu DC, Niu YL, DePaolo DJ, Harrison TM, Mo XX, Dong GC, Zhou S, Sun CG, Zhang ZC, Liu JL (2014) Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta 143:207–231

    Article  Google Scholar 

  • Maruyama S, Hasegawa A, Santosh M, Kogiso T, Omori S, Nakamura H, Kawai K, Zhao D (2009) The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones. Gondwana Res 16:414–430

    Article  Google Scholar 

  • Meng J, Wang CS, Zhao XX, Coe R, Li YL, Finn D (2012) India-Asia collision was at 24 degrees N and 50 Ma: palaeomagnetic proof from southernmost Asia. Sci Rep-Uk 2:925

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652

    Article  Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, van der Hilst RD (2008) The geological evolution of the Tibetan plateau. Science 321:1054–1058

    Article  Google Scholar 

  • Sibuet JC, Hsu SK, Debayle E (2004) Geodynamic context of the Taiwan Orogen. In: Clift P, Kuhnt W, Wang P, Hayes H (eds) Continent-ocean interactions within east Asian marginal seas. American Geophysical Union, pp 127–158

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Spicer RA, Harris NBW, Widdowson M, Herman AB, Guo SX, Valdes PJ, Wolfe JA, Kelley SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624

    Article  Google Scholar 

  • Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88

    Article  Google Scholar 

  • Subrahmanyam C, Gireesh R, Chand S, Raju KAK, Rao DG (2008) Geophysical characteristics of the Ninetyeast Ridge—Andaman island arc/trench convergent zone. Earth Planet Sci Lett 266:29–45

    Article  Google Scholar 

  • Sun XM, Tang Q, Sun WD, Xu L, Zhai W, Liang JL, Liang YH, Shen K, Zhang ZM, Zhou B, Wang FY (2007) Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochim Cosmochim Acta 71:2896–2905

    Article  Google Scholar 

  • Sun XL, Song XD, Zheng SH, Ritzwoller MH (2010) Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq Sci 23:449–463

    Article  Google Scholar 

  • Sun WD, Zhang H, Ling MX, Ding X, Chung SL, Zhou JB, Yang XY, Fan WM (2011) The genetic association of adakites and Cu-Au ore deposits. Int Geol Rev 53:691–703

    Article  Google Scholar 

  • Sun WD, Ling MX, Chung SL, Ding X, Yang XY, Liang HY, Fan WM, Goldfarb R, Yin QZ (2012) Geochemical constraints on adakites of different origins and copper mineralization. J Geol 120:105–120

    Article  Google Scholar 

  • Sun WD, Liang HY, Ling MX, Zhan MZ, Ding X, Zhang H, Yang XY, Li YL, Ireland T, Wei QR, Fan WM (2013) The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta 103:263–275

    Article  Google Scholar 

  • Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE, Ling MX (2015) Porphyry deposits and oxidized magmas. Ore Geol Rev 65:97–131

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Ledain AY, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in Asia—New insights from simple experiments with plasticine. Geology 10:611–616

    Article  Google Scholar 

  • Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Geology—oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677

    Article  Google Scholar 

  • Taylor B, Hayes DE (1980) The tectonic evolution of the South China Basin. In: Hayes DE (ed) The tectonic and geologic evolution of Southeast Asian seas and islands, part 1. American Geophysical Union, Geophysical Monograph, Washington, pp 89–104

    Chapter  Google Scholar 

  • van Hinsbergen DJJ, Steinberger B, Doubrovine PV, Gassmoller R (2011) Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J Geophys Res. https://doi.org/10.1029/2010JB008051

  • Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33:465–468

    Article  Google Scholar 

  • Williams H, Turner S, Kelley S, Harris N (2001) Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29:339–342

    Article  Google Scholar 

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2012) Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo deposit, southern Tibet, China. Resour Geol. https://doi.org/10.1111/j.1751-3928.2011.00177.x

    Google Scholar 

  • Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG (2010) Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. J Metamorph Geol 28:719–733

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NSFC 91328204 to W.D.S. and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18020102) to W.D.S. and X.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Sun, Wd., Hu, Yb. et al. Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge. Acta Geochim 37, 395–401 (2018). https://doi.org/10.1007/s11631-018-0262-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-018-0262-y

Keywords

Navigation