Skip to main content
Log in

The use of in-situ cosmogenic 21Ne in studies on long-term landscape development

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Cosmogenic Ne isotopes are stable and are routinely used for constraining the timing of events and the rate of surface change beyond the limit that can be studied with radionuclides 10Be, 26Al, and 36Cl. Cosmogenic Ne analysis can be used in quartz and in a range of other minerals. Analysis typically requires significantly less material than do cosmogenic 10Be and 26Al, opening up the technique for small samples—individual pebbles in river sediments, for example. Analysis is easier and faster than for radionuclides, not least because Ne measurements do not require significant chemical procedures. However, the presence of other sources of Ne in minerals tends to restrict the use of cosmogenic 21Ne to old landscapes and long exposure durations. In this review we briefly outline the background of cosmogenic Ne production in rocks and minerals at the Earth’s surface, then document the key uses of the technique by highlighting some earlier studies, and finish with a short perspective on the future of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altmaier M, Herpers U, Delisle G, Merchel S, Ott U (2010) Glaciation history of Queen Maud Land (Antarctica) reconstructed from in-situ produced cosmogenic 10Be, 26Al and 21Ne. Polar Sci 4:42–61

    Article  Google Scholar 

  • Alvarez-Marrón J, Hetzel R, Niedermann S, Menéndez R, Marquínez J (2008) Origin, structure and exposure history of a wave-cut platform more than 1 Ma in age at the coast of northern Spain: a multiple cosmogenic nuclide approach. Geomorphology 93:316–334

    Article  Google Scholar 

  • Anderson RS, Repka JL, Dick GS (1996) Explicit treatment of inheritance in dating depositional surfaces using in-situ 10Be and 26Al. Geology 24:47–51

    Article  Google Scholar 

  • Antón L et al (2012) Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology 165:50–61

    Article  Google Scholar 

  • Balco G, Shuster DL (2009a) 26Al–10Be–21Ne burial dating. Earth Planet Sci Lett 286:570–575

    Article  Google Scholar 

  • Balco G, Shuster DL (2009b) Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet Sci Lett 281:48–58

    Article  Google Scholar 

  • Balco G, Stone JO (2005) Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah. Earth Surf Process Landf 30:1051–1067

    Article  Google Scholar 

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195

    Article  Google Scholar 

  • Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. Rev Mineral Geochem 47:481–538

    Article  Google Scholar 

  • Barbouti A, Rastin B (1983) A study of the absolute intensity of muons at sea level and under various thicknesses of absorber. J Phys G: Nucl Phys 9:1577–1595

    Article  Google Scholar 

  • Benedetti L et al (2002) Post-glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett. doi:10.1029/2001GL014510

    Google Scholar 

  • Borchers B et al (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198

    Article  Google Scholar 

  • Braucher R, Merchel S, Borgomano J, Bourlès D (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9

    Article  Google Scholar 

  • Brown ET, Bourlès D, Colin F, Raisbeck GM, Yiou F, Desgarceaux S (1995) Evidence for muon-induced production of 10Be in near-surface rocks from the Congo. Geophys Res Lett 22:703–706

    Article  Google Scholar 

  • Bruno LA, Baur H, Graf T, Schlu C, Signer P, Wieler R (1997) Dating of Sirius group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet Sci Lett 147:37–54

    Article  Google Scholar 

  • Cerling TE, Poreda RJ, Rathburn SL (1994) Cosmogenic 3He and 21Ne age of the big lost river flood, Snake River plain, Idaho. Geology 22:227–230

    Article  Google Scholar 

  • Clark DH, Bierman PR, Larsen P (1995) Improving in-situ cosmogenic chronometers. Quat Res 44:367–377

    Article  Google Scholar 

  • Clark MK, House M, Royden L, Whipple K, Burchfiel B, Zhang X, Tang W (2005) Late Cenozoic uplift of southeastern Tibet. Geology 33:525–528

    Article  Google Scholar 

  • Codilean AT, Bishop P, Stuart FM, Hoey TB, Fabel D, Freeman SP (2008) Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36:159–162

    Article  Google Scholar 

  • Davis M, Matmon A, Fink D, Ron H, Niedermann S (2011) Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel—implications for cosmogenic burial dating. Earth Planet Sci Lett 305:317–327

    Article  Google Scholar 

  • Desilets D, Zreda M (2003) Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating. Earth Planet Sci Lett 206:21–42

    Article  Google Scholar 

  • Desilets D, Zreda M, Prabu T (2006) Extended scaling factors for in-situ cosmogenic nuclides: new measurements at low latitude. Earth Planet Sci Lett 246:265–276

    Article  Google Scholar 

  • Dunai T (2001) Influence of secular variation of the geomagnetic field on production rates of in-situ produced cosmogenic nuclides. Earth Planet Sci Lett 193:197–212

    Article  Google Scholar 

  • Dunai TJ, López GAG, Juez-Larré J (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324

    Article  Google Scholar 

  • Dunai TJ, Stuart FM, Pik R, Burnard P, Gayer E (2007) Production of 3He in crustal rocks by cosmogenic thermal neutrons. Earth Planet Sci Lett 258:228–236

    Article  Google Scholar 

  • Eberhardt P, Eugster O, Marti K (1965) Notizen: a redetermination of the isotopic composition of atmospheric neon. Z Naturforsch A 20:623–624

    Article  Google Scholar 

  • Espanon VR, Honda M, Chivas AR (2014) Cosmogenic 3He and 21Ne surface exposure dating of young basalts from Southern Mendoza, Argentina. Quat Geochronol 19:76–86

    Article  Google Scholar 

  • Evenstar LA, Stuart FM, Hartley AJ, Tattitch B (2015) Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the Pacific Planation Surface. Geophys Res Lett 42:8448–8455

    Article  Google Scholar 

  • Farley K et al (2014) In-situ radiometric and exposure age dating of the Martian surface. Science 343:1247166

    Article  Google Scholar 

  • Fenton CR, Niedermann S (2014) Surface exposure dating of young basalts (1–200 ka) in the San Francisco volcanic field (Arizona, USA) using cosmogenic 3He and 21Ne. Quat Geochronol 19:87–105

    Article  Google Scholar 

  • Foeken JP, Day S, Stuart FM (2009) Cosmogenic 3He exposure dating of the Quaternary basalts from Fogo, Cape Verdes: implications for rift zone and magmatic reorganisation. Quat Geochronol 4:37–49

    Article  Google Scholar 

  • Foeken JP, Stuart FM, Mark DF (2012) Long-term low latitude cosmogenic 3He production rate determined from a 126 ka basalt from Fogo, Cape Verdes. Earth Planet Sci Lett 359:14–25

    Article  Google Scholar 

  • Fujioka T, Chappell J, Honda M, Yatsevich I, Fifield K, Fabel D (2005) Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne–10Be. Geology 33:993–996

    Article  Google Scholar 

  • Gillen D, Honda M, Chivas AR, Yatsevich I, Patterson D, Carr PF (2010) Cosmogenic 21Ne exposure dating of young basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. Quat Geochronol 5:1–9

    Article  Google Scholar 

  • Goehring BM, Kurz MD, Balco G, Schaefer JM, Licciardi J, Lifton N (2010) A reevaluation of in-situ cosmogenic 3He production rates. Quat Geochronol 5:410–418

    Article  Google Scholar 

  • Goethals M et al (2009a) An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz. Earth Planet Sci Lett 284:187–198

    Article  Google Scholar 

  • Goethals M, Niedermann S, Hetzel R, Fenton C (2009b) Determining the impact of faulting on the rate of erosion in a low-relief landscape: a case study using in-situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103:401–413

    Article  Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in-situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Graf T, Kohl C, Marti K, Nishiizumi K (1991) Cosmic-ray produced neon in Antarctic rocks. Geophys Res Lett 18:203–206

    Article  Google Scholar 

  • Graf AA, Strasky S, Ivy-Ochs S, Akçar N, Kubik PW, Burkhard M, Schlüchter C (2007) First results of cosmogenic dated pre-Last Glaciation erratics from the Montoz area, Jura Mountains, Switzerland. Quat Int 164:43–52

    Article  Google Scholar 

  • Granger D, Riebe C (2007) Cosmogenic nuclides in weathering and erosion. Treatise Geochem 5:1–43

    Google Scholar 

  • Granger DE, Smith AL (2000) Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nucl Instrum Methods Phys Res B 172:822–826

    Article  Google Scholar 

  • Granger DE, Kirchner JW, Finkel RC (1997) Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 25:107–110

    Article  Google Scholar 

  • Hein AS et al (2016) Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years. Nat Commun 7:10325

    Article  Google Scholar 

  • Hetzel R, Niedermann S, Ivy-Ochs S, Kubik PW, Tao M, Gao B (2002a) 21Ne versus 10Be and 26Al exposure ages of fluvial terraces: the influence of crustal Ne in quartz. Earth Planet Sci Lett 201:575–591

    Article  Google Scholar 

  • Hetzel R, Niedermann S, Tao M, Kubik PW, Ivy-Ochs S, Gao B, Strecker MR (2002b) Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417:428–432

    Article  Google Scholar 

  • Honda M, Zhang X, Phillips D, Hamilton D, Deerberg M, Schwieters JB (2015) Redetermination of the 21Ne relative abundance of the atmosphere, using a high resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus). Int J Mass Spectrom 387:1–7

    Article  Google Scholar 

  • Ivy-Ochs S, Schlüchter C, Kubik PW, Dittrich-Hannen B, Beer J (1995) Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica. Geology 23:1007–1010

    Article  Google Scholar 

  • Ivy-Ochs S et al (2006) The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol Soc Am Spec Pap 415:43–60

    Google Scholar 

  • Kennedy B, Hiyagon H, Reynolds J (1990) Crustal neon: a striking uniformity. Earth Planet Sci Lett 98:277–286

    Article  Google Scholar 

  • Kober F, Ivy-Ochs S, Zeilinger G, Schlunegger F, Kubik P, Baur H, Wieler R (2009) Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile. Earth Surf Process Landf 34:398–412

    Article  Google Scholar 

  • Kohl C, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587

    Article  Google Scholar 

  • Kong P, Huang F, Liu X, Fink D, Ding L, Lai Q (2010) Late Miocene ice sheet elevation in the Grove Mountains, East Antarctica, inferred from cosmogenic 21Ne–10Be–26Al. Glob Planet Change 72:50–54

    Article  Google Scholar 

  • Kurz MD (1986) In-situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim Cosmochim Acta 50:2855–2862

    Article  Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in-situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: Sitte K (ed) Cosmic rays. Springer, Berlin, pp 551–612

    Google Scholar 

  • Lifton NA, Bieber JW, Clem JM, Duldig ML, Evenson P, Humble JE, Pyle R (2005) Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in-situ cosmogenic nuclide applications. Earth Planet Sci Lett 239:140–161

    Article  Google Scholar 

  • Lifton N, Sato T, Dunai TJ (2014) Scaling in-situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160

    Article  Google Scholar 

  • Ma Y, Wu Y, Li D, Zheng D (2015) Analytical procedure of neon measurements on GV 5400 noble gas mass spectrometer and its evaluation by quartz standard CREU-1. Int J Mass Spectrom 380:26–33

    Article  Google Scholar 

  • Ma Y et al (2016) Erosion rate in the Shapotou area, northwestern China, constrained by in-situ-produced cosmogenic 21Ne in long-exposed erosional surfaces. Quat Geochronol 31:3–11

    Article  Google Scholar 

  • Margerison H, Phillips W, Stuart F, Sugden D (2005) An assessment of cosmogenic 3He surface exposure dating in the Northern Dry Valleys of East Antarctica. Earth Planet Sci Lett 230:163–175

    Article  Google Scholar 

  • Marrero SM, Phillips FM, Borchers B, Lifton N, Aumer R, Balco G (2016) Cosmogenic nuclide systematics and the CRONUScalc program. Quat Geochronol 31:160–187

    Article  Google Scholar 

  • Masarik J, Reedy RC (1995) Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet Sci Lett 136:381–395

    Article  Google Scholar 

  • Matmon A, Fink D, Davis M, Niedermann S, Rood D, Frumkin A (2014) Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quat Res 82:281–295

    Article  Google Scholar 

  • Niedermann S (2000) The 21Ne production rate in quartz revisited. Earth Planet Sci Lett 183:361–364

    Article  Google Scholar 

  • Niedermann S (2002) Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Rev Mineral Geochem 47:731–784

    Article  Google Scholar 

  • Niedermann S, Graf T, Marti K (1993) Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet Sci Lett 118:65–73

    Article  Google Scholar 

  • Niedermann S, Graf T, Kim J, Kohl C, Marti K, Nishiizumi K (1994) Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates. Earth Planet Sci Lett 125:341–355

    Article  Google Scholar 

  • Nishiizumi K, Winterer E, Kohl C, Klein J, Middleton R, Lal D, Arnold J (1989) Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J Geophys Res Solid Earth 94:17907–17915

    Article  Google Scholar 

  • Oberholzer P et al (2003) Limited pliocene/pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in-situ cosmogenic nuclides. Antarct Sci 15:493–502

    Article  Google Scholar 

  • Oberholzer P, Baroni C, Salvatore M, Baur H, Wieler R (2008) Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes. Antarct Sci 20:89–98

    Article  Google Scholar 

  • Phillips WM, McDonald EV, Reneau SL, Poths J (1998) Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA. Earth Planet Sci Lett 160:209–223

    Article  Google Scholar 

  • Phillips FM et al (2016) The CRONUS-earth project: a synthesis. Quat Geochronol 31:119–154

    Article  Google Scholar 

  • Placzek C, Matmon A, Granger D, Quade J, Niedermann S (2010) Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides. Earth Planet Sci Lett 295:12–20

    Article  Google Scholar 

  • Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today 21:4–10

    Article  Google Scholar 

  • Sarda P, Staudacher T, Allègre CJ, Lecomte A (1993) Cosmogenic neon and helium at Réunion: measurement of erosion rate. Earth Planet Sci Lett 119:405–417

    Article  Google Scholar 

  • Schäfer JM, Ivy-Ochs S, Wieler R, Leya I, Baur H, Denton GH, Schlüchter C (1999) Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth Planet Sci Lett 167:215–226

    Article  Google Scholar 

  • Schäfer JM et al (2002) The limited influence of glaciations in Tibet on global climate over the past 170 000 yr. Earth Planet Sci Lett 194:287–297

    Article  Google Scholar 

  • Shuster DL, Farley KA (2005) 4He/3He thermochronometry: theory, practice, and potential complications. Rev Mineral Geochem 58:181–203

    Article  Google Scholar 

  • Staiger J, Marchant D, Schaefer J, Oberholzer P, Johnson J, Lewis A, Swanger K (2006) Plio-pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth Planet Sci Lett 243:489–503

    Article  Google Scholar 

  • Staudacher T, Allègre CJ (1993) Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth Planet Sci Lett 119:395–404

    Article  Google Scholar 

  • Stone J, Vasconcelos P (2000) Studies of geomorphic rates and processes with cosmogenic isotopes—examples from Australia. J Conf Abs 5:961

    Google Scholar 

  • Strasky S et al (2009a) Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic ice sheet, Ricker Hills, Victoria Land. Antarct Sci 21:59–69

    Article  Google Scholar 

  • Strasky S, Graf AA, Zhao Z, Kubik PW, Baur H, Schlüchter C, Wieler R (2009b) Late Glacial ice advances in southeast Tibet. J Asian Earth Sci 34:458–465

    Article  Google Scholar 

  • Strobl M, Hetzel R, Niedermann S, Ding L, Zhang L (2012) Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in-situ-produced cosmogenic 10Be and 21Ne. Geomorphology 153:192–204

    Article  Google Scholar 

  • Summerfield M, Stuart F, Cockburn H, Sugden D, Denton G, Dunai T, Marchant D (1999) Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology 27:113–129

    Article  Google Scholar 

  • Van den Bogaard P, Schirnick C (1995) 40Ar/39Ar laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States. Geology 23:759–762

    Article  Google Scholar 

  • Van der Wateren FM, Dunai TJ, Van Balen RT, Klas W, Verbers AL, Passchier S, Herpers U (1999) Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Glob Planet Change 23:145–172

    Article  Google Scholar 

  • Vermeesch P (2007) CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochem Geophys Geosyst. doi:10.1029/2006GC001530

    Google Scholar 

  • Vermeesch P et al (2015) Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat Geochronol 26:20–28

    Article  Google Scholar 

  • Yatsevich I, Honda M (1997) Production of nucleogenic neon in the Earth from natural radioactive decay. J Geophys Res Solid Earth 102:10291–10298

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the basic scientific research fund, Institute of Geology, China Earthquake Administration (Grant Nos. IGCEA1504 and IGCEA1417), and the authors express their thanks for China Scholarship Council (CSC) who have sponsored the first author’s visit in Scottish Universities Environmental Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Stuart, F.M. The use of in-situ cosmogenic 21Ne in studies on long-term landscape development. Acta Geochim 37, 310–322 (2018). https://doi.org/10.1007/s11631-017-0216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-017-0216-9

Keywords

Navigation