Acta Geochimica

, Volume 37, Issue 2, pp 310–322 | Cite as

The use of in-situ cosmogenic 21Ne in studies on long-term landscape development

Original Article
  • 96 Downloads

Abstract

Cosmogenic Ne isotopes are stable and are routinely used for constraining the timing of events and the rate of surface change beyond the limit that can be studied with radionuclides 10Be, 26Al, and 36Cl. Cosmogenic Ne analysis can be used in quartz and in a range of other minerals. Analysis typically requires significantly less material than do cosmogenic 10Be and 26Al, opening up the technique for small samples—individual pebbles in river sediments, for example. Analysis is easier and faster than for radionuclides, not least because Ne measurements do not require significant chemical procedures. However, the presence of other sources of Ne in minerals tends to restrict the use of cosmogenic 21Ne to old landscapes and long exposure durations. In this review we briefly outline the background of cosmogenic Ne production in rocks and minerals at the Earth’s surface, then document the key uses of the technique by highlighting some earlier studies, and finish with a short perspective on the future of the technique.

Keywords

Cosmogenic nuclides 21Ne Long timescale Landscape evolution 

Notes

Acknowledgements

This work was supported by the basic scientific research fund, Institute of Geology, China Earthquake Administration (Grant Nos. IGCEA1504 and IGCEA1417), and the authors express their thanks for China Scholarship Council (CSC) who have sponsored the first author’s visit in Scottish Universities Environmental Research Centre.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Altmaier M, Herpers U, Delisle G, Merchel S, Ott U (2010) Glaciation history of Queen Maud Land (Antarctica) reconstructed from in-situ produced cosmogenic 10Be, 26Al and 21Ne. Polar Sci 4:42–61CrossRefGoogle Scholar
  2. Alvarez-Marrón J, Hetzel R, Niedermann S, Menéndez R, Marquínez J (2008) Origin, structure and exposure history of a wave-cut platform more than 1 Ma in age at the coast of northern Spain: a multiple cosmogenic nuclide approach. Geomorphology 93:316–334CrossRefGoogle Scholar
  3. Anderson RS, Repka JL, Dick GS (1996) Explicit treatment of inheritance in dating depositional surfaces using in-situ 10Be and 26Al. Geology 24:47–51CrossRefGoogle Scholar
  4. Antón L et al (2012) Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology 165:50–61CrossRefGoogle Scholar
  5. Balco G, Shuster DL (2009a) 26Al–10Be–21Ne burial dating. Earth Planet Sci Lett 286:570–575CrossRefGoogle Scholar
  6. Balco G, Shuster DL (2009b) Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet Sci Lett 281:48–58CrossRefGoogle Scholar
  7. Balco G, Stone JO (2005) Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah. Earth Surf Process Landf 30:1051–1067CrossRefGoogle Scholar
  8. Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195CrossRefGoogle Scholar
  9. Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. Rev Mineral Geochem 47:481–538CrossRefGoogle Scholar
  10. Barbouti A, Rastin B (1983) A study of the absolute intensity of muons at sea level and under various thicknesses of absorber. J Phys G: Nucl Phys 9:1577–1595CrossRefGoogle Scholar
  11. Benedetti L et al (2002) Post-glacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett. doi: 10.1029/2001GL014510 Google Scholar
  12. Borchers B et al (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198CrossRefGoogle Scholar
  13. Braucher R, Merchel S, Borgomano J, Bourlès D (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9CrossRefGoogle Scholar
  14. Brown ET, Bourlès D, Colin F, Raisbeck GM, Yiou F, Desgarceaux S (1995) Evidence for muon-induced production of 10Be in near-surface rocks from the Congo. Geophys Res Lett 22:703–706CrossRefGoogle Scholar
  15. Bruno LA, Baur H, Graf T, Schlu C, Signer P, Wieler R (1997) Dating of Sirius group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet Sci Lett 147:37–54CrossRefGoogle Scholar
  16. Cerling TE, Poreda RJ, Rathburn SL (1994) Cosmogenic 3He and 21Ne age of the big lost river flood, Snake River plain, Idaho. Geology 22:227–230CrossRefGoogle Scholar
  17. Clark DH, Bierman PR, Larsen P (1995) Improving in-situ cosmogenic chronometers. Quat Res 44:367–377CrossRefGoogle Scholar
  18. Clark MK, House M, Royden L, Whipple K, Burchfiel B, Zhang X, Tang W (2005) Late Cenozoic uplift of southeastern Tibet. Geology 33:525–528CrossRefGoogle Scholar
  19. Codilean AT, Bishop P, Stuart FM, Hoey TB, Fabel D, Freeman SP (2008) Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36:159–162CrossRefGoogle Scholar
  20. Davis M, Matmon A, Fink D, Ron H, Niedermann S (2011) Dating Pliocene lacustrine sediments in the central Jordan Valley, Israel—implications for cosmogenic burial dating. Earth Planet Sci Lett 305:317–327CrossRefGoogle Scholar
  21. Desilets D, Zreda M (2003) Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating. Earth Planet Sci Lett 206:21–42CrossRefGoogle Scholar
  22. Desilets D, Zreda M, Prabu T (2006) Extended scaling factors for in-situ cosmogenic nuclides: new measurements at low latitude. Earth Planet Sci Lett 246:265–276CrossRefGoogle Scholar
  23. Dunai T (2001) Influence of secular variation of the geomagnetic field on production rates of in-situ produced cosmogenic nuclides. Earth Planet Sci Lett 193:197–212CrossRefGoogle Scholar
  24. Dunai TJ, López GAG, Juez-Larré J (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324CrossRefGoogle Scholar
  25. Dunai TJ, Stuart FM, Pik R, Burnard P, Gayer E (2007) Production of 3He in crustal rocks by cosmogenic thermal neutrons. Earth Planet Sci Lett 258:228–236CrossRefGoogle Scholar
  26. Eberhardt P, Eugster O, Marti K (1965) Notizen: a redetermination of the isotopic composition of atmospheric neon. Z Naturforsch A 20:623–624CrossRefGoogle Scholar
  27. Espanon VR, Honda M, Chivas AR (2014) Cosmogenic 3He and 21Ne surface exposure dating of young basalts from Southern Mendoza, Argentina. Quat Geochronol 19:76–86CrossRefGoogle Scholar
  28. Evenstar LA, Stuart FM, Hartley AJ, Tattitch B (2015) Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the Pacific Planation Surface. Geophys Res Lett 42:8448–8455CrossRefGoogle Scholar
  29. Farley K et al (2014) In-situ radiometric and exposure age dating of the Martian surface. Science 343:1247166CrossRefGoogle Scholar
  30. Fenton CR, Niedermann S (2014) Surface exposure dating of young basalts (1–200 ka) in the San Francisco volcanic field (Arizona, USA) using cosmogenic 3He and 21Ne. Quat Geochronol 19:87–105CrossRefGoogle Scholar
  31. Foeken JP, Day S, Stuart FM (2009) Cosmogenic 3He exposure dating of the Quaternary basalts from Fogo, Cape Verdes: implications for rift zone and magmatic reorganisation. Quat Geochronol 4:37–49CrossRefGoogle Scholar
  32. Foeken JP, Stuart FM, Mark DF (2012) Long-term low latitude cosmogenic 3He production rate determined from a 126 ka basalt from Fogo, Cape Verdes. Earth Planet Sci Lett 359:14–25CrossRefGoogle Scholar
  33. Fujioka T, Chappell J, Honda M, Yatsevich I, Fifield K, Fabel D (2005) Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne–10Be. Geology 33:993–996CrossRefGoogle Scholar
  34. Gillen D, Honda M, Chivas AR, Yatsevich I, Patterson D, Carr PF (2010) Cosmogenic 21Ne exposure dating of young basaltic lava flows from the Newer Volcanic Province, western Victoria, Australia. Quat Geochronol 5:1–9CrossRefGoogle Scholar
  35. Goehring BM, Kurz MD, Balco G, Schaefer JM, Licciardi J, Lifton N (2010) A reevaluation of in-situ cosmogenic 3He production rates. Quat Geochronol 5:410–418CrossRefGoogle Scholar
  36. Goethals M et al (2009a) An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz. Earth Planet Sci Lett 284:187–198CrossRefGoogle Scholar
  37. Goethals M, Niedermann S, Hetzel R, Fenton C (2009b) Determining the impact of faulting on the rate of erosion in a low-relief landscape: a case study using in-situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103:401–413CrossRefGoogle Scholar
  38. Gosse JC, Phillips FM (2001) Terrestrial in-situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560CrossRefGoogle Scholar
  39. Graf T, Kohl C, Marti K, Nishiizumi K (1991) Cosmic-ray produced neon in Antarctic rocks. Geophys Res Lett 18:203–206CrossRefGoogle Scholar
  40. Graf AA, Strasky S, Ivy-Ochs S, Akçar N, Kubik PW, Burkhard M, Schlüchter C (2007) First results of cosmogenic dated pre-Last Glaciation erratics from the Montoz area, Jura Mountains, Switzerland. Quat Int 164:43–52CrossRefGoogle Scholar
  41. Granger D, Riebe C (2007) Cosmogenic nuclides in weathering and erosion. Treatise Geochem 5:1–43Google Scholar
  42. Granger DE, Smith AL (2000) Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nucl Instrum Methods Phys Res B 172:822–826CrossRefGoogle Scholar
  43. Granger DE, Kirchner JW, Finkel RC (1997) Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 25:107–110CrossRefGoogle Scholar
  44. Hein AS et al (2016) Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years. Nat Commun 7:10325CrossRefGoogle Scholar
  45. Hetzel R, Niedermann S, Ivy-Ochs S, Kubik PW, Tao M, Gao B (2002a) 21Ne versus 10Be and 26Al exposure ages of fluvial terraces: the influence of crustal Ne in quartz. Earth Planet Sci Lett 201:575–591CrossRefGoogle Scholar
  46. Hetzel R, Niedermann S, Tao M, Kubik PW, Ivy-Ochs S, Gao B, Strecker MR (2002b) Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417:428–432CrossRefGoogle Scholar
  47. Honda M, Zhang X, Phillips D, Hamilton D, Deerberg M, Schwieters JB (2015) Redetermination of the 21Ne relative abundance of the atmosphere, using a high resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus). Int J Mass Spectrom 387:1–7CrossRefGoogle Scholar
  48. Ivy-Ochs S, Schlüchter C, Kubik PW, Dittrich-Hannen B, Beer J (1995) Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica. Geology 23:1007–1010CrossRefGoogle Scholar
  49. Ivy-Ochs S et al (2006) The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol Soc Am Spec Pap 415:43–60Google Scholar
  50. Kennedy B, Hiyagon H, Reynolds J (1990) Crustal neon: a striking uniformity. Earth Planet Sci Lett 98:277–286CrossRefGoogle Scholar
  51. Kober F, Ivy-Ochs S, Zeilinger G, Schlunegger F, Kubik P, Baur H, Wieler R (2009) Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile. Earth Surf Process Landf 34:398–412CrossRefGoogle Scholar
  52. Kohl C, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587CrossRefGoogle Scholar
  53. Kong P, Huang F, Liu X, Fink D, Ding L, Lai Q (2010) Late Miocene ice sheet elevation in the Grove Mountains, East Antarctica, inferred from cosmogenic 21Ne–10Be–26Al. Glob Planet Change 72:50–54CrossRefGoogle Scholar
  54. Kurz MD (1986) In-situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim Cosmochim Acta 50:2855–2862CrossRefGoogle Scholar
  55. Lal D (1991) Cosmic ray labeling of erosion surfaces: in-situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439CrossRefGoogle Scholar
  56. Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: Sitte K (ed) Cosmic rays. Springer, Berlin, pp 551–612Google Scholar
  57. Lifton NA, Bieber JW, Clem JM, Duldig ML, Evenson P, Humble JE, Pyle R (2005) Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in-situ cosmogenic nuclide applications. Earth Planet Sci Lett 239:140–161CrossRefGoogle Scholar
  58. Lifton N, Sato T, Dunai TJ (2014) Scaling in-situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet Sci Lett 386:149–160CrossRefGoogle Scholar
  59. Ma Y, Wu Y, Li D, Zheng D (2015) Analytical procedure of neon measurements on GV 5400 noble gas mass spectrometer and its evaluation by quartz standard CREU-1. Int J Mass Spectrom 380:26–33CrossRefGoogle Scholar
  60. Ma Y et al (2016) Erosion rate in the Shapotou area, northwestern China, constrained by in-situ-produced cosmogenic 21Ne in long-exposed erosional surfaces. Quat Geochronol 31:3–11CrossRefGoogle Scholar
  61. Margerison H, Phillips W, Stuart F, Sugden D (2005) An assessment of cosmogenic 3He surface exposure dating in the Northern Dry Valleys of East Antarctica. Earth Planet Sci Lett 230:163–175CrossRefGoogle Scholar
  62. Marrero SM, Phillips FM, Borchers B, Lifton N, Aumer R, Balco G (2016) Cosmogenic nuclide systematics and the CRONUScalc program. Quat Geochronol 31:160–187CrossRefGoogle Scholar
  63. Masarik J, Reedy RC (1995) Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet Sci Lett 136:381–395CrossRefGoogle Scholar
  64. Matmon A, Fink D, Davis M, Niedermann S, Rood D, Frumkin A (2014) Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quat Res 82:281–295CrossRefGoogle Scholar
  65. Niedermann S (2000) The 21Ne production rate in quartz revisited. Earth Planet Sci Lett 183:361–364CrossRefGoogle Scholar
  66. Niedermann S (2002) Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Rev Mineral Geochem 47:731–784CrossRefGoogle Scholar
  67. Niedermann S, Graf T, Marti K (1993) Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet Sci Lett 118:65–73CrossRefGoogle Scholar
  68. Niedermann S, Graf T, Kim J, Kohl C, Marti K, Nishiizumi K (1994) Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates. Earth Planet Sci Lett 125:341–355CrossRefGoogle Scholar
  69. Nishiizumi K, Winterer E, Kohl C, Klein J, Middleton R, Lal D, Arnold J (1989) Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J Geophys Res Solid Earth 94:17907–17915CrossRefGoogle Scholar
  70. Oberholzer P et al (2003) Limited pliocene/pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in-situ cosmogenic nuclides. Antarct Sci 15:493–502CrossRefGoogle Scholar
  71. Oberholzer P, Baroni C, Salvatore M, Baur H, Wieler R (2008) Dating late Cenozoic erosional surfaces in Victoria Land, Antarctica, with cosmogenic neon in pyroxenes. Antarct Sci 20:89–98CrossRefGoogle Scholar
  72. Phillips WM, McDonald EV, Reneau SL, Poths J (1998) Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA. Earth Planet Sci Lett 160:209–223CrossRefGoogle Scholar
  73. Phillips FM et al (2016) The CRONUS-earth project: a synthesis. Quat Geochronol 31:119–154CrossRefGoogle Scholar
  74. Placzek C, Matmon A, Granger D, Quade J, Niedermann S (2010) Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides. Earth Planet Sci Lett 295:12–20CrossRefGoogle Scholar
  75. Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10Be. GSA Today 21:4–10CrossRefGoogle Scholar
  76. Sarda P, Staudacher T, Allègre CJ, Lecomte A (1993) Cosmogenic neon and helium at Réunion: measurement of erosion rate. Earth Planet Sci Lett 119:405–417CrossRefGoogle Scholar
  77. Schäfer JM, Ivy-Ochs S, Wieler R, Leya I, Baur H, Denton GH, Schlüchter C (1999) Cosmogenic noble gas studies in the oldest landscape on earth: surface exposure ages of the Dry Valleys, Antarctica. Earth Planet Sci Lett 167:215–226CrossRefGoogle Scholar
  78. Schäfer JM et al (2002) The limited influence of glaciations in Tibet on global climate over the past 170 000 yr. Earth Planet Sci Lett 194:287–297CrossRefGoogle Scholar
  79. Shuster DL, Farley KA (2005) 4He/3He thermochronometry: theory, practice, and potential complications. Rev Mineral Geochem 58:181–203CrossRefGoogle Scholar
  80. Staiger J, Marchant D, Schaefer J, Oberholzer P, Johnson J, Lewis A, Swanger K (2006) Plio-pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth Planet Sci Lett 243:489–503CrossRefGoogle Scholar
  81. Staudacher T, Allègre CJ (1993) Ages of the second caldera of Piton de la Fournaise volcano (Réunion) determined by cosmic ray produced 3He and 21Ne. Earth Planet Sci Lett 119:395–404CrossRefGoogle Scholar
  82. Stone J, Vasconcelos P (2000) Studies of geomorphic rates and processes with cosmogenic isotopes—examples from Australia. J Conf Abs 5:961Google Scholar
  83. Strasky S et al (2009a) Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic ice sheet, Ricker Hills, Victoria Land. Antarct Sci 21:59–69CrossRefGoogle Scholar
  84. Strasky S, Graf AA, Zhao Z, Kubik PW, Baur H, Schlüchter C, Wieler R (2009b) Late Glacial ice advances in southeast Tibet. J Asian Earth Sci 34:458–465CrossRefGoogle Scholar
  85. Strobl M, Hetzel R, Niedermann S, Ding L, Zhang L (2012) Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in-situ-produced cosmogenic 10Be and 21Ne. Geomorphology 153:192–204CrossRefGoogle Scholar
  86. Summerfield M, Stuart F, Cockburn H, Sugden D, Denton G, Dunai T, Marchant D (1999) Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology 27:113–129CrossRefGoogle Scholar
  87. Van den Bogaard P, Schirnick C (1995) 40Ar/39Ar laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States. Geology 23:759–762CrossRefGoogle Scholar
  88. Van der Wateren FM, Dunai TJ, Van Balen RT, Klas W, Verbers AL, Passchier S, Herpers U (1999) Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Glob Planet Change 23:145–172CrossRefGoogle Scholar
  89. Vermeesch P (2007) CosmoCalc: an Excel add-in for cosmogenic nuclide calculations. Geochem Geophys Geosyst. doi: 10.1029/2006GC001530 Google Scholar
  90. Vermeesch P et al (2015) Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat Geochronol 26:20–28CrossRefGoogle Scholar
  91. Yatsevich I, Honda M (1997) Production of nucleogenic neon in the Earth from natural radioactive decay. J Geophys Res Solid Earth 102:10291–10298CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Earthquake Dynamics, Institute of GeologyChina Earthquake AdministrationBeijingChina
  2. 2.Isotope Geosciences Unit, Scottish Universities Environmental Research CentreScottish Enterprise Technology ParkEast KilbrideUK

Personalised recommendations