Acta Geochimica

, Volume 37, Issue 2, pp 244–256 | Cite as

Determination of Hf–Sr–Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fusion in geological materials

  • Zhian Bao
  • Chunlei Zong
  • Linru Fang
  • Honglin Yuan
  • Kaiyun Chen
  • Mengning Dai
Original Article
  • 89 Downloads

Abstract

In this study, we established a rapid acid digestion for determining Hf–Sr–Nd isotopic ratios of geological samples by using MC-ICP-MS. Conditions of 1600 °C for 1 min and 1400 °C for 1 min were adopted for fusing intrusive rocks and extrusive rocks, respectively. The rapid acid digestion technique is superior in digestion time compared with high-pressure PTFE bomb method. The procedural blanks of the method were also lower than that flux fusion. Replicate analyses of international certified reference materials (CRMs) indicate that isotopic ratios of 176Hf/177Hf, 87Sr/86Sr and 143Nd/144Nd agree well with previously published data. The external reproducibility (2SD, n = 5) of ten CRMs are ±0.000030 for 87Sr/86Sr, ±0.000030 for 143Nd/144Nd, and ±0.000018 for 176Hf/177Hf.

Keywords

Certified reference material Flux-free fusion Hf–Sr–Nd isotopic ratio Procedural blank Rapid acid digestion 

Notes

Acknowledgements

We would like to thank the editors and anonymous reviewers who helped to improve this manuscript. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41421002, 41427804, and 41373004) and the MOST Research Foundation from the State Key Laboratory of Continental Dynamics (Grant Nos. BJ08132-1, 207010021, and 201210004).

References

  1. Bao Z, Yuan W, Yuan H, Liu X, Chen K, Zong C (2016a) Non-matrix-matched determination of lead isotope ratios in ancient bronze artifacts by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. Int J Mass Spectrom 402:12–19CrossRefGoogle Scholar
  2. Bao Z, Zhang H, Yuan H, Liu Y, Chen K, Zong C (2016b) Flux-free fusion technique using boron nitride vessel and rapid acid digestion for trace elements determination by ICP-MS. J Anal At Spectrom 31(11):2261–2271CrossRefGoogle Scholar
  3. Bizzarro M, Baker JA, Ulfbeck D (2003) A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostand Newsl 27(2):133–145CrossRefGoogle Scholar
  4. Blichert-Toft J, Chauvel C, Albarède F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Miner Petrol 127(3):248–260CrossRefGoogle Scholar
  5. Carpentier M, Weis D, Chauvel C (2014) Fractionation of Sr and Hf isotopes by mineral sorting in Cascadia Basin terrigenous sediments. Chem Geol 382:67–82CrossRefGoogle Scholar
  6. Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand Geoanal Res 35(1):125–143CrossRefGoogle Scholar
  7. Chen JY, Yang JH, Zhang JH, Sun JF, Wilde SA (2013) Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: zircon U–Pb age and Sr–Nd–Hf–O isotopic evidence. Lithos 162–163(2):140–156CrossRefGoogle Scholar
  8. Cheng T, Nebel O, Sossi P, Chen F (2015) Assessment of hafnium and iron isotope compositions of Chinese national igneous rock standard materials GSR-1 (granite), GSR-2 (andesite), and GSR-3 (basalt). Int J Mass Spectrom 386(1):61–66CrossRefGoogle Scholar
  9. Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G, Burton K (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17(12):1567–1574CrossRefGoogle Scholar
  10. Chu Z, Chen F, Yang Y, Guo J (2009) Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry. J Anal At Spectrom 24(11):1534–1544CrossRefGoogle Scholar
  11. Connelly JN, Ulfbeck DG, Thrane K, Bizzarro M, Housh T (2006) A method for purifying Lu and Hf for analyses by MC-ICP-MS using TODGA resin. Chem Geol 233(1):126–136CrossRefGoogle Scholar
  12. Foster GL, Vance D (2006) In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS. J Anal At Spectrom 21(3):288–296CrossRefGoogle Scholar
  13. Fourny A, Weis D, Scoates JS (2016) Comprehensive Pb–Sr–Nd–Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials. Geochem Geophys Geosyst 17(3):739–773CrossRefGoogle Scholar
  14. Howarth RJ, McArthur JM (1997) Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age. J Geol 105(4):441–456CrossRefGoogle Scholar
  15. Huang C, Yang YH, Yang JH, Xie LW (2015) In situ simultaneous measurement of Rb–Sr/Sm–Nd or Sm–Nd/Lu–Hf isotopes in natural minerals using laser ablation multi-collector ICP-MS. J Anal At Spectrom 30(4):994–1000CrossRefGoogle Scholar
  16. Iizuka T, Hirata T (2005) Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem Geol 220(1–2):121–137CrossRefGoogle Scholar
  17. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338CrossRefGoogle Scholar
  18. Kleinhanns IC, Kreissig K, Kamber BS, Meisel T, Nägler TF, Kramers JD (2002) combined chemical separation of Lu, Hf, Sm, Nd, and REEs from a single rock digest: precise and accurate isotope determinations of Lu-Hf and Sm-Nd using multicollector-ICPMS. Anal Chem 74(1):67–73CrossRefGoogle Scholar
  19. Le Fèvre B, Pin C (2001) An extraction chromatography method for Hf separation prior to isotopic analysis using multiple collection ICP-mass spectrometry. Anal Chem 73(11):2453–2460CrossRefGoogle Scholar
  20. Le Fèvre B, Pin C (2005) A straightforward separation scheme for concomitant Lu–Hf and Sm–Nd isotope ratio and isotope dilution analysis. Anal Chim Acta 543(1–2):209–221CrossRefGoogle Scholar
  21. Li CF, Li XH, Li QL, Guo JH, Li XH (2011) Directly determining 143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm-Nd. J Anal At Spectrom 26(10):2012–2022CrossRefGoogle Scholar
  22. Li CF, Li XH, Li QL, Guo JH, Li XH, Yang YH (2012) Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal Chim Acta 727(10):54–60CrossRefGoogle Scholar
  23. Li CF, Guo JH, Yang YH, Chu ZY, Wang XC (2014) Single-step separation scheme and high-precision isotopic ratios analysis of Sr–Nd–Hf in silicate materials. J Anal At Spectrom 29(8):1467–1476CrossRefGoogle Scholar
  24. Li CF, Wang XC, Li YL, Chu ZY, Guo JH, Li XH (2015) Ce-Nd separation by solid-phase micro-extraction and its application to high-precision 142Nd/144Nd measurements using TIMS in geological materials. J Anal At Spectrom 30(4):895–902CrossRefGoogle Scholar
  25. Li CF, Wang XC, Guo JH, Chu ZY, Feng LJ (2016) Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry. J Anal At Spectrom 31(5):1150–1159CrossRefGoogle Scholar
  26. Lu Y, Makishima A, Nakamura E (2007) Purification of Hf in silicate materials using extraction chromatographic resin, and its application to precise determination of 176Hf/177Hf by MC-ICP-MS with 179Hf spike. J Anal At Spectrom 22(1):69–76CrossRefGoogle Scholar
  27. Mahlen NJ, Beard BL, Johnson CM, Lapen TJ (2013) An investigation of dissolution methods for Lu-Hf and Sm-Nd isotope studies in zircon- and garnet-bearing whole-rock samples. Geochem Geophys Geosyst 9(1):690–701Google Scholar
  28. Muller W, Anczkiewicz R (2016) Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite—a problem reassessed. J Anal At Spectrom 31(1):259–269CrossRefGoogle Scholar
  29. Nebel O, Morel MLA, Vroon PZ (2009) Isotope dilution determinations of Lu, Hf, Zr, Ta and W, and Hf isotope compositions of NIST SRM 610 and 612 glass wafers. Geostand Geoanal Res 33(4):487–499CrossRefGoogle Scholar
  30. Potts PJ, Robinson P (2003) Sample preparation of geological samples, soils and sediments. Compr Anal Chem 41(03):723–763CrossRefGoogle Scholar
  31. Raczek I, Jochum KP, Hofmann AW (2003) Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostand Newsl 27(2):173–179CrossRefGoogle Scholar
  32. Ramos FC, Wolff JA, Tollstrup DL (2004) Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chem Geol 211(1–2):135–158CrossRefGoogle Scholar
  33. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168(3–4):279–281CrossRefGoogle Scholar
  34. Tomascak BP, Krogstad JE, Walker JR (1996) Nature of the crust in Maine, USA: evidence from the Sebago batholith. Contrib Miner Petrol 125(1):45–59CrossRefGoogle Scholar
  35. Ulfbeck D, Baker J, Waight T, Krogstad E (2003) Rapid sample digestion by fusion and chemical separation of Hf for isotopic analysis by MC-ICPMS. Talanta 59(2):365–373CrossRefGoogle Scholar
  36. Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45(12):2311–2323CrossRefGoogle Scholar
  37. Weis D, Kieffer B, Maerschalk C, Barling J, Jong J, Williams GA, Hanano D, Pretorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst 7(8):139–149CrossRefGoogle Scholar
  38. Weis D, Kieffer B, Hanano D, Nobre Silva I, Barling J, Pretorius W, Maerschalk C, Mattielli N (2007) Hf isotope compositions of U.S. Geological Survey reference materials. Geochem Geophys Geosyst 8(6):122–125CrossRefGoogle Scholar
  39. Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209(1–2):121–135CrossRefGoogle Scholar
  40. Yang YH, Zhang HF, Chu ZY, Xie LW, Wu FY (2010) Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using multi-collector ICP-MS and TIMS. Int J Mass Spectrom 290(2–3):120–126CrossRefGoogle Scholar
  41. Yang YH, Wu FY, Wilde SA, Xie LW (2011) A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards. Int J Mass Spectrom 299(1):47–52CrossRefGoogle Scholar
  42. Yang YH, Wu FY, Liu ZC, Chu ZY, Xie LW, Yang JH (2012) Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. J Anal At Spectrom 27(3):516–522CrossRefGoogle Scholar
  43. Yang YH, Wu FY, Xie LW, Chu ZY, Yang JH (2014) Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry. Spectrochim Acta, Part B 97(7):118–123CrossRefGoogle Scholar
  44. Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM, Diwu CR (2008) Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol 247(1–2):100–118CrossRefGoogle Scholar
  45. Zhian B, Honglin Y, Chunlei Z, Ye L, Kaiyun C, Yulin Z (2016) Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS. J Anal At Spectrom 31(4):1012–1022CrossRefGoogle Scholar
  46. Zong C (2012) Chemical separation of Pb, Sr, Nd, Hf isotopes from a single rock dissolution and its geological application]. Northwest University, Xi’an (in Chinese) Google Scholar
  47. Zong C, Yuan H, Dai M (2012) A feasibility study on chemical separation of Pb, Sr and Nd from the same single dissolution of geological sample. Rock Miner Anal 31(6):945–949 (in Chinese with English abstract) Google Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhian Bao
    • 1
  • Chunlei Zong
    • 1
  • Linru Fang
    • 1
  • Honglin Yuan
    • 1
  • Kaiyun Chen
    • 1
  • Mengning Dai
    • 1
  1. 1.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest UniversityXi’anChina

Personalised recommendations