Skip to main content
Log in

Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

In this paper, we report new whole-rock geochemical and zircon U–Pb data for monzogranites in the NE Xing’an block. These data constrained the petrogenesis of C type (high Sr/Y) adakitic rocks and showed the spatial extent of the influence of the Mongol-Okhostsk ocean tectonic regime and the collision between the Jiamusi Massif and Songliao Terrane. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicated that the monzogranites in the studied area were emplaced in the Early Jurassic (~180 Ma). These rocks were characterized by unusally high SiO2 (≥67.49), and Sr (461–759 ppm), but strikingly low Y (4.63–8.06 ppm) and HREE (∑HREE = 3.83–6.49 ppm, Yb = 0.5–0.77 ppm) contents, with therefore high Sr/Y (67.2–119) and (La/Yb)N (29.7–41.5) ratios, showing the geochemical characteristics of C type adakitic granite. The data displayed negligible Eu anomalies (Eu/Eu* = 0.77–1.08), LREE-enriched and pronounced negative Nb and Ta anomalies. The C-type adakites in the studied area were most likely derived from the partial melting of a thickened lower continental curst. The magma source is most likely dominated by amphibolites and garnet amphibolites. In combination with previously-reported data from igneous rocks from the Mesozoic in NE China, we conclude that the Xing’an block was influenced by the Mongol-Okhotsk subduction tectonic system, and experiences compressive settings from the amalgamation of the Jiamusi block in the east of the CAOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atherton MP, Petford N (1993) Generation of sodium-rich magma from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55

    Article  Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51. doi:10.1007/s004100050467

    Article  Google Scholar 

  • Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ et al (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024. doi:10.1130/G19796.1

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–499

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL et al (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Ge XY, Li XH, Chen ZG, Li WP (2002) Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: constrains on crustal thickness. Chin Sci Bull 47:962–968

    Article  Google Scholar 

  • Ge WC, Wu FY, Zhou CY, Rahman AA (2005) Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Rang. Chin Sci Bull 20:2097–2105 (in Chinese)

    Article  Google Scholar 

  • Ge WC, Wu FY, Zhou CY, Zhang JH (2007) Porphyry Cu–Mo deposits in the eastern Xing’an–Mongolian orogenic belt: mineralization ages and their geodynamic implications. Chin Sci Bull 52:3416–3427 (in Chinese)

    Article  Google Scholar 

  • Geng HY, Sun M, Yuan C et al (2009) Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266:364–389. doi:10.1016/j.chemgeo.2009.07.001

    Article  Google Scholar 

  • HBGMR (Hei Longjiang Bureau of Geology and Mineral Resources) (1993) Regional geology of Heilongjiang Province. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • He ZJ, Li JY, Niu BG, Ren JS (1998) A Late Jurassic intense thrusting-uplifting event in the Yanshan–Yinshan area, Northern China, and its sedimentary response. Geol Rev 4:407–418 (in Chinese with English abstract)

  • He YS, Li SG, Hoefs J, Huang F et al (2011) Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta 75:3815–3838

  • Hu J, Jiang SY, Zhao HX, Shao Y, Zhang ZZ, Xiao E, Wang Y, Dai BZ, Li HY (2012) Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China. J Asian Earth Sci 56:276–289

    Article  Google Scholar 

  • Hu XL, Ding ZJ, He MC, Yao SZ, Zhu BP, Shen J, Chen B (2014) A porphyry-skarn metallogenic system in the lesser Xing’an Range, NE China: implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits. J Asian Earth Sci 90:88–100

    Article  Google Scholar 

  • Huang XL, Xu YG, Lan JB, Yang QJ, Luo ZY (2009) Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze craton: partial melts of a thickened lower crust. Lithos 112:367–381

    Article  Google Scholar 

  • Innocenti F, Agostini S, Vincenzo GD et al (2005) Neogene and quaternary volcanism in Western Anatolia: magma sources and geodynamic evolution. Mar Geol 221:397–421

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi:10.1016/0040-1951(93)90295-U

    Article  Google Scholar 

  • Kinny PD, Wijbrans JR, Froude DO, Williams IS, Compston W (1990) Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust J Earth Sci 37:51–69

    Article  Google Scholar 

  • Koschek G (1993) Origin and significance of the SEM cathodoluminescence from zircon. J Microsc 171:223–232

    Article  Google Scholar 

  • Kravchinsky VA, Cogné JP, Harbert WP, Kuzmin MI (2002) Evolution of the Mongol-Okhotsk ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys J Int 148:34–57

    Article  Google Scholar 

  • Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci 26:207–224

    Article  Google Scholar 

  • Liu S, Hu RZ, Feng CX, Chi XG, Li C, Yang RH, Wang TW, Jin W (2003) Cenozoic adakite-type volcanic rocks in Qiangtang, Tibet and its significance. Acta Geol Sin 77:187–193

    Article  Google Scholar 

  • Liu YS, Zong KQ, Kelemen PB, Gao S (2008) Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247:133–153

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Long X, Wilde SA, Wang Q, Yuan C, Wang XC, Li J, Jiang Z, Dan W (2015) Partial melting of thickened continental crust in central Tibet: evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang terrane. Earth Planet Sci Lett 414:30–44. doi:10.1016/j.epsl.2015.01.007

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, p 39

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593. doi:10.1016/j.epsl.2005.12.034

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Article  Google Scholar 

  • Martin H (1999) The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Maruyama S, Send T (1986) Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics 127:305–329

    Article  Google Scholar 

  • Moyen JF, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. Geophys Monogr 164:149–175

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pei FP, Xu WL, Yu Y, Zhao QG, Yang DB (2008) Petrogenesis of the late Triassic Mayihe pluton in southern Jilin province: evidence from zircon U–Pb geochronology and geochemistry. J Jilin Univer (Earth Sci Ed) 38:252–263 (in Chinese with English abstract)

    Google Scholar 

  • Qian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rapp R, Shimizu N, Norman M, Applegate G (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. The crust, vol 3. Amsterdam, Elsevier, pp 1–64. doi:10.1016/B0-08-043751-6/03016-4

    Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B (2012) U–Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol Sin 28:571–594 (in Chinese with English abstract)

    Google Scholar 

  • Streck MJ, Leeman WP, Chesley J (2007) High magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354. doi:10.1130/G23286A.1

    Article  Google Scholar 

  • Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC, Cheng RY (2007) Zircon U–Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrol Sin 23:461–480 (in Chinese with English abstract)

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, vol 42. Geological Society, Special Publications, London, pp 313–345

    Google Scholar 

  • Sun DY, Suzuki K, Wu FY, Lu XP (2005) CHIME dating and its application for Mesozoic granites of Huanggoushan, Jilin Province. Geochimica 34:305–314 (in Chinese with English abstract)

    Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44. doi:10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Tomurtogoo O, Windley BF, Kroner A, Badarch G, Liu DY (2005) Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J Geol Soc Lond 162:125–134

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CH, Xu W (2007) Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Geoanal Res 19:1–23

    Article  Google Scholar 

  • Wilde SA, Dorsett-Bain HL, Liu JL (1997) The identification of a Late Pan-African granulite facies event in northeastern China: SHRIMP U–Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China. In: Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology, vol 17. VSP International Science Publishers, Amsterdam, pp 59–74

  • Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U–Th–Pb. Contrib Mineral Petrol 97:205–217

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383

    Article  Google Scholar 

  • Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173

    Article  Google Scholar 

  • Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB, Li GY (2005) Discovery of the Early Paleozoic post-collosional granites in northern margin of the Ergun massif and its geological significance. Chin Sci Bull 50:2733–2743 (in Chinese)

    Article  Google Scholar 

  • Wu FY, Zhao GC, Sun DY, Wilde SA, Yang JH (2007) The Hulan Group: its role in the evolution of the Central Asian orogenic belt of NE China. J Asian Earth Sci 30:542–556

    Article  Google Scholar 

  • Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30

    Article  Google Scholar 

  • Wu G, Chen YC, Chen YJ, Zeng QT (2012) Zircon U–Pb ages of the metamorphic supracrustal rocks of the Xinhudukou Group and granitic complexes in the Argun massif of the northern Greater Xing’an Mountains, NE China, and their tectonic implications. J Asian Earth Sci 49:214–233

    Article  Google Scholar 

  • Wyllie PJ, Wolf MB (1993) Amphibolite dehydration-melting: sorting out the solidus. Geological Society, London, Special Publications 76:405–416

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian orogenic belt. Tectonics 22:8-1-20

    Article  Google Scholar 

  • Xu JF, Shinjo R, Defant MJ, Wang Q, Robert P (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114

    Article  Google Scholar 

  • Xu WL, Wang QH, Wang DY, Guo JH, Pei FP (2006) Mesozoic adakitic rocks from the Xuzhou–Suzhou area, eastern China: evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci 27:454–464

    Article  Google Scholar 

  • Xu WL, Hergt JM, Gao S, Pei FP, Wang W, Yang DB (2008) Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett 265:123–137

    Article  Google Scholar 

  • Xu HJ, Ma CQ, Zhang JF, Ye K (2013) Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Res 23:190–207

  • Yang DB, Xu WL, Zhao GC, Huo TF, Shi JP, Yang HT (2016) Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton. Gondwana Res 38:220–237

  • Yin A, Nie S (1996) A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 442–485

    Google Scholar 

  • Ying JF, Zhou XH, Zhang LC, Wang F (2010) Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications. J Asian Earth Sci 39:786–793

    Article  Google Scholar 

  • Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP, Guo GJ (2001) The characteristics and tectonic–metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrol Sin 17:236–244

    Google Scholar 

  • Zhang JH, Gao S, Ge WC, Wu FY, Yan JH, Wilde SA, Li M (2010) Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, Northeastern China: implications for subduction-induced delamination. Chem Geol 276(3):144–165

    Article  Google Scholar 

  • Zhao X, Coe RS, Zhou Y, Wu H, Wang J (1990) New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan. Tectonophysics 181:43–81

    Article  Google Scholar 

  • Zhao CJ, Peng YJ, Dang ZX, Zhang YP, Zhu Q, Shu YZ, Wang ZF, Tai CB, Gu F, Zhang JF, Zheng CZ, Dang YS (1996) Tectonic Framework and crust evolution of eastern Jilin and Heilongjiang provinces. Publishing House of Liaoning University, Shenyang, p 186 (in Chinese with English abstract)

    Google Scholar 

  • Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ, Zhang XH (2009) The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478:230–246

    Article  Google Scholar 

  • Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ (2011) A >1300 km late Pan-African metamorphic belt in NE China: new evidence from the Xing’an block and its tectonic implications. Tectonophysics 509:280–292

    Article  Google Scholar 

  • Zhou XC, Zhang HF, Luo BJ, Pan FB, Zhang SS, Guo L (2016) Origin of high Sr/Y-type granitic magmatism in the southwestern of the Alxa block, Northwest China. Lithos 256–257:211–227

    Article  Google Scholar 

Download references

Acknowledgements

We are most grateful to the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan and the Wuhan Sample Solution Analytical Technology Co., Ltd for their assistance during the U–Pb dating and trace element analyses. Professor Yang Wen and engineer Yu Xihuan from the Hei Longjiang Institute of Geological survey provided great help in filed work. We especially thank anonymous reviewers for their insightful and constructive comments. This work was supported by the regional geology and mineralization research program of Heilongjiang province (HLJKD201417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyou Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Sun, G., Sun, D. et al. Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication. Acta Geochim 37, 281–294 (2018). https://doi.org/10.1007/s11631-017-0190-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-017-0190-2

Keywords

Navigation