Acta Geochimica

, Volume 37, Issue 2, pp 281–294 | Cite as

Origin of C type adakite magmas in the NE Xing’an block, NE China and tectonic implication

  • Changzhou Deng
  • Guangyi Sun
  • Deyou Sun
  • Hu Huang
  • Jianfeng Zhang
  • Jun Gou
Original Article


In this paper, we report new whole-rock geochemical and zircon U–Pb data for monzogranites in the NE Xing’an block. These data constrained the petrogenesis of C type (high Sr/Y) adakitic rocks and showed the spatial extent of the influence of the Mongol-Okhostsk ocean tectonic regime and the collision between the Jiamusi Massif and Songliao Terrane. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicated that the monzogranites in the studied area were emplaced in the Early Jurassic (~180 Ma). These rocks were characterized by unusally high SiO2 (≥67.49), and Sr (461–759 ppm), but strikingly low Y (4.63–8.06 ppm) and HREE (∑HREE = 3.83–6.49 ppm, Yb = 0.5–0.77 ppm) contents, with therefore high Sr/Y (67.2–119) and (La/Yb)N (29.7–41.5) ratios, showing the geochemical characteristics of C type adakitic granite. The data displayed negligible Eu anomalies (Eu/Eu* = 0.77–1.08), LREE-enriched and pronounced negative Nb and Ta anomalies. The C-type adakites in the studied area were most likely derived from the partial melting of a thickened lower continental curst. The magma source is most likely dominated by amphibolites and garnet amphibolites. In combination with previously-reported data from igneous rocks from the Mesozoic in NE China, we conclude that the Xing’an block was influenced by the Mongol-Okhotsk subduction tectonic system, and experiences compressive settings from the amalgamation of the Jiamusi block in the east of the CAOB.


C type adakite Geochemistry U–Pb age Thickened LCC NE Xing’an block 



We are most grateful to the staff of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan and the Wuhan Sample Solution Analytical Technology Co., Ltd for their assistance during the U–Pb dating and trace element analyses. Professor Yang Wen and engineer Yu Xihuan from the Hei Longjiang Institute of Geological survey provided great help in filed work. We especially thank anonymous reviewers for their insightful and constructive comments. This work was supported by the regional geology and mineralization research program of Heilongjiang province (HLJKD201417).


  1. Atherton MP, Petford N (1993) Generation of sodium-rich magma from newly underplated basaltic crust. Nature 362:144–146CrossRefGoogle Scholar
  2. Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55CrossRefGoogle Scholar
  3. Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51. doi: 10.1007/s004100050467 CrossRefGoogle Scholar
  4. Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ et al (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024. doi: 10.1130/G19796.1 CrossRefGoogle Scholar
  5. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–499CrossRefGoogle Scholar
  6. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790CrossRefGoogle Scholar
  7. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  8. Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL et al (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897CrossRefGoogle Scholar
  9. Ge XY, Li XH, Chen ZG, Li WP (2002) Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: constrains on crustal thickness. Chin Sci Bull 47:962–968CrossRefGoogle Scholar
  10. Ge WC, Wu FY, Zhou CY, Rahman AA (2005) Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Ergun block in the northern part of the Da Hinggan Rang. Chin Sci Bull 20:2097–2105 (in Chinese) CrossRefGoogle Scholar
  11. Ge WC, Wu FY, Zhou CY, Zhang JH (2007) Porphyry Cu–Mo deposits in the eastern Xing’an–Mongolian orogenic belt: mineralization ages and their geodynamic implications. Chin Sci Bull 52:3416–3427 (in Chinese) CrossRefGoogle Scholar
  12. Geng HY, Sun M, Yuan C et al (2009) Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chem Geol 266:364–389. doi: 10.1016/j.chemgeo.2009.07.001 CrossRefGoogle Scholar
  13. HBGMR (Hei Longjiang Bureau of Geology and Mineral Resources) (1993) Regional geology of Heilongjiang Province. Geological Publishing House, Beijing (in Chinese with English abstract) Google Scholar
  14. He ZJ, Li JY, Niu BG, Ren JS (1998) A Late Jurassic intense thrusting-uplifting event in the Yanshan–Yinshan area, Northern China, and its sedimentary response. Geol Rev 4:407–418 (in Chinese with English abstract) Google Scholar
  15. He YS, Li SG, Hoefs J, Huang F et al (2011) Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta 75:3815–3838Google Scholar
  16. Hu J, Jiang SY, Zhao HX, Shao Y, Zhang ZZ, Xiao E, Wang Y, Dai BZ, Li HY (2012) Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China. J Asian Earth Sci 56:276–289CrossRefGoogle Scholar
  17. Hu XL, Ding ZJ, He MC, Yao SZ, Zhu BP, Shen J, Chen B (2014) A porphyry-skarn metallogenic system in the lesser Xing’an Range, NE China: implications from U–Pb and Re–Os geochronology and Sr–Nd–Hf isotopes of the Luming Mo and Xulaojiugou Pb–Zn deposits. J Asian Earth Sci 90:88–100CrossRefGoogle Scholar
  18. Huang XL, Xu YG, Lan JB, Yang QJ, Luo ZY (2009) Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze craton: partial melts of a thickened lower crust. Lithos 112:367–381CrossRefGoogle Scholar
  19. Innocenti F, Agostini S, Vincenzo GD et al (2005) Neogene and quaternary volcanism in Western Anatolia: magma sources and geodynamic evolution. Mar Geol 221:397–421CrossRefGoogle Scholar
  20. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi: 10.1016/0040-1951(93)90295-U CrossRefGoogle Scholar
  21. Kinny PD, Wijbrans JR, Froude DO, Williams IS, Compston W (1990) Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust J Earth Sci 37:51–69CrossRefGoogle Scholar
  22. Koschek G (1993) Origin and significance of the SEM cathodoluminescence from zircon. J Microsc 171:223–232CrossRefGoogle Scholar
  23. Kravchinsky VA, Cogné JP, Harbert WP, Kuzmin MI (2002) Evolution of the Mongol-Okhotsk ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophys J Int 148:34–57CrossRefGoogle Scholar
  24. Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian ocean and subduction of the Paleo-Pacific Plate. J Asian Earth Sci 26:207–224CrossRefGoogle Scholar
  25. Liu S, Hu RZ, Feng CX, Chi XG, Li C, Yang RH, Wang TW, Jin W (2003) Cenozoic adakite-type volcanic rocks in Qiangtang, Tibet and its significance. Acta Geol Sin 77:187–193CrossRefGoogle Scholar
  26. Liu YS, Zong KQ, Kelemen PB, Gao S (2008) Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247:133–153CrossRefGoogle Scholar
  27. Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571CrossRefGoogle Scholar
  28. Long X, Wilde SA, Wang Q, Yuan C, Wang XC, Li J, Jiang Z, Dan W (2015) Partial melting of thickened continental crust in central Tibet: evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang terrane. Earth Planet Sci Lett 414:30–44. doi: 10.1016/j.epsl.2015.01.007 CrossRefGoogle Scholar
  29. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, p 39Google Scholar
  30. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593. doi: 10.1016/j.epsl.2005.12.034 CrossRefGoogle Scholar
  31. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643CrossRefGoogle Scholar
  32. Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756CrossRefGoogle Scholar
  33. Martin H (1999) The adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429CrossRefGoogle Scholar
  34. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos 79:1–24CrossRefGoogle Scholar
  35. Maruyama S, Send T (1986) Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics 127:305–329CrossRefGoogle Scholar
  36. Moyen JF, Stevens G (2006) Experimental constraints on TTG petrogenesis: implications for Archean geodynamics. Geophys Monogr 164:149–175Google Scholar
  37. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  38. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  39. Pei FP, Xu WL, Yu Y, Zhao QG, Yang DB (2008) Petrogenesis of the late Triassic Mayihe pluton in southern Jilin province: evidence from zircon U–Pb geochronology and geochemistry. J Jilin Univer (Earth Sci Ed) 38:252–263 (in Chinese with English abstract) Google Scholar
  40. Qian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224CrossRefGoogle Scholar
  41. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  42. Rapp R, Shimizu N, Norman M, Applegate G (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  43. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. The crust, vol 3. Amsterdam, Elsevier, pp 1–64. doi: 10.1016/B0-08-043751-6/03016-4 Google Scholar
  44. Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307CrossRefGoogle Scholar
  45. She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B (2012) U–Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol Sin 28:571–594 (in Chinese with English abstract) Google Scholar
  46. Streck MJ, Leeman WP, Chesley J (2007) High magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354. doi: 10.1130/G23286A.1 CrossRefGoogle Scholar
  47. Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC, Cheng RY (2007) Zircon U–Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrol Sin 23:461–480 (in Chinese with English abstract) Google Scholar
  48. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, vol 42. Geological Society, Special Publications, London, pp 313–345Google Scholar
  49. Sun DY, Suzuki K, Wu FY, Lu XP (2005) CHIME dating and its application for Mesozoic granites of Huanggoushan, Jilin Province. Geochimica 34:305–314 (in Chinese with English abstract) Google Scholar
  50. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44. doi: 10.1016/S0024-4937(98)00024-3 CrossRefGoogle Scholar
  51. Tomurtogoo O, Windley BF, Kroner A, Badarch G, Liu DY (2005) Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J Geol Soc Lond 162:125–134CrossRefGoogle Scholar
  52. Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CH, Xu W (2007) Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636CrossRefGoogle Scholar
  53. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  54. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Geoanal Res 19:1–23CrossRefGoogle Scholar
  55. Wilde SA, Dorsett-Bain HL, Liu JL (1997) The identification of a Late Pan-African granulite facies event in northeastern China: SHRIMP U–Pb zircon dating of the Mashan Group at Liu Mao, Heilongjiang Province, China. In: Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology, vol 17. VSP International Science Publishers, Amsterdam, pp 59–74Google Scholar
  56. Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U–Th–Pb. Contrib Mineral Petrol 97:205–217CrossRefGoogle Scholar
  57. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115:369–383CrossRefGoogle Scholar
  58. Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173CrossRefGoogle Scholar
  59. Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB, Li GY (2005) Discovery of the Early Paleozoic post-collosional granites in northern margin of the Ergun massif and its geological significance. Chin Sci Bull 50:2733–2743 (in Chinese) CrossRefGoogle Scholar
  60. Wu FY, Zhao GC, Sun DY, Wilde SA, Yang JH (2007) The Hulan Group: its role in the evolution of the Central Asian orogenic belt of NE China. J Asian Earth Sci 30:542–556CrossRefGoogle Scholar
  61. Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30CrossRefGoogle Scholar
  62. Wu G, Chen YC, Chen YJ, Zeng QT (2012) Zircon U–Pb ages of the metamorphic supracrustal rocks of the Xinhudukou Group and granitic complexes in the Argun massif of the northern Greater Xing’an Mountains, NE China, and their tectonic implications. J Asian Earth Sci 49:214–233CrossRefGoogle Scholar
  63. Wyllie PJ, Wolf MB (1993) Amphibolite dehydration-melting: sorting out the solidus. Geological Society, London, Special Publications 76:405–416CrossRefGoogle Scholar
  64. Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian orogenic belt. Tectonics 22:8-1-20CrossRefGoogle Scholar
  65. Xu JF, Shinjo R, Defant MJ, Wang Q, Robert P (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114CrossRefGoogle Scholar
  66. Xu WL, Wang QH, Wang DY, Guo JH, Pei FP (2006) Mesozoic adakitic rocks from the Xuzhou–Suzhou area, eastern China: evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci 27:454–464CrossRefGoogle Scholar
  67. Xu WL, Hergt JM, Gao S, Pei FP, Wang W, Yang DB (2008) Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett 265:123–137CrossRefGoogle Scholar
  68. Xu HJ, Ma CQ, Zhang JF, Ye K (2013) Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Res 23:190–207Google Scholar
  69. Yang DB, Xu WL, Zhao GC, Huo TF, Shi JP, Yang HT (2016) Tectonic implications of Early Cretaceous low-Mg adakitic rocks generated by partial melting of thickened lower continental crust at the southern margin of the central North China Craton. Gondwana Res 38:220–237Google Scholar
  70. Yin A, Nie S (1996) A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 442–485Google Scholar
  71. Ying JF, Zhou XH, Zhang LC, Wang F (2010) Geochronological framework of Mesozoic volcanic rocks in the Great Xing’an Range, NE China, and their geodynamic implications. J Asian Earth Sci 39:786–793CrossRefGoogle Scholar
  72. Zhang Q, Wang Y, Qian Q, Yang JH, Wang YL, Zhao TP, Guo GJ (2001) The characteristics and tectonic–metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrol Sin 17:236–244Google Scholar
  73. Zhang JH, Gao S, Ge WC, Wu FY, Yan JH, Wilde SA, Li M (2010) Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, Northeastern China: implications for subduction-induced delamination. Chem Geol 276(3):144–165CrossRefGoogle Scholar
  74. Zhao X, Coe RS, Zhou Y, Wu H, Wang J (1990) New paleomagnetic results from northern China: collision and suturing with Siberia and Kazakhstan. Tectonophysics 181:43–81CrossRefGoogle Scholar
  75. Zhao CJ, Peng YJ, Dang ZX, Zhang YP, Zhu Q, Shu YZ, Wang ZF, Tai CB, Gu F, Zhang JF, Zheng CZ, Dang YS (1996) Tectonic Framework and crust evolution of eastern Jilin and Heilongjiang provinces. Publishing House of Liaoning University, Shenyang, p 186 (in Chinese with English abstract) Google Scholar
  76. Zhou JB, Wilde SA, Zhang XZ, Zhao GC, Zheng CQ, Wang YJ, Zhang XH (2009) The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 478:230–246CrossRefGoogle Scholar
  77. Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ (2011) A >1300 km late Pan-African metamorphic belt in NE China: new evidence from the Xing’an block and its tectonic implications. Tectonophysics 509:280–292CrossRefGoogle Scholar
  78. Zhou XC, Zhang HF, Luo BJ, Pan FB, Zhang SS, Guo L (2016) Origin of high Sr/Y-type granitic magmatism in the southwestern of the Alxa block, Northwest China. Lithos 256–257:211–227CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Changzhou Deng
    • 1
  • Guangyi Sun
    • 2
    • 3
  • Deyou Sun
    • 1
  • Hu Huang
    • 4
  • Jianfeng Zhang
    • 5
  • Jun Gou
    • 1
  1. 1.College of Earth SciencesJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Institute of Sedimentary GeologyChengdu University of TechnologyChengduChina
  5. 5.Heilongjiang Institute of Geological SurveyHarbinChina

Personalised recommendations