Cyclohexane Dehydrogenation in Solar-Driven Hydrogen Permeation Membrane Reactor for Efficient Solar Energy Conversion and Storage


Cyclohexane dehydrogenation in the solar-driven membrane reactor is a promising method of directly producing pure hydrogen and benzene from cyclohexane and storing low-grade solar energy as high-grade chemical energy. In this paper, partial pressure of gases, conversion rate of cyclohexane, and energy efficiency of the reactor are analyzed based on numerical simulation. The process of cyclohexane dehydrogenation under four temperatures (200°C, 250°C, 300°C, and 350°C) and four permeate pressures (0.050 MPa, 0.025 MPa, 0.010 MPa, and 0.001 MPa) were studied. A complete conversion rate (99.9%) of cyclohexane was obtained as the reaction equilibrium shifts forward with hydrogen separation. The first-law thermodynamic efficiency, solar-to-fuel efficiency, and exergy efficiency could reach as high as 94.69%, 46.93% and 93.08%, respectively. This study indicates that it is feasible to combine solar energy supply technology with cyclohexane dehydrogenation reaction integrated with membrane reactor.

This is a preview of subscription content, access via your institution.


C p :

specific heat capacity/kJ·(mol·K)1

d M :

membrane thickness/m

Ex :


ΔG :

Gibbs free energy/J·mol−1


molar higher heating value/kJ·mol−1

ΔH :

enthalpy change/kJ·mol−1

J :

hydrogen permeation flux/mol/(m2·s)−1

K p :

reaction equilibrium constant/Pa3

P :


P 0 :

atmosphere pressure/MPa

Q rg :

solar thermal energy input for raising reactant temperature/kJ

Q th :

enthalpy change of cyclohexane dehydrogenation/kJ

Q sh :

thermal energy out of reactor/kJ

R :

universal gas constant/J·(mol·K)−1

r c :

kinetic reaction rate/mol·s−1

ΔS :

entropy of reactions/J·(mol·K)−1

T 0 :

room temperature/K

T h :

reaction temperature/K

T sun :

temperature of the sun surface/K

ηabs :

absorption efficiency

ηex :

exergy efficiency

ηHHV :

first-law thermodynamic efficiency with separation exergy

ηHHV,real :

first-law thermodynamic efficiency with real separation energy

ηopt :

optical efficiency

ηp :

vacuum pump efficiency

ηs→e :

photoelectric efficiency

ηs→f :

solar-to-fuel efficiency with separation exergy

ηs→f,real :

solar-to-fuel efficiency with real separation energy


standard state


input, inside




output, outside




reactant gas


residual gas


  1. [1]

    Wang H.S., Solar thermochemical fuel generation. Wind Solar Hybrid Renewable Energy System, 2020. DOI:

  2. [2]

    Lewis N.S., Nocera D.G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729–15735.

    ADS  Article  Google Scholar 

  3. [3]

    Guo S.P., Liu Q.B., Sun J., Jin H.G., A review on the utilization of hybrid renewable energy. Renewable and Sustainable Energy Reviews, 2018, 91: 1121–1147.

    Article  Google Scholar 

  4. [4]

    Kong H., Hao Y., Wang H.S., A solar thermochemical fuel production system integrated with fossil fuel heat recuperation. Applied Thermal Engineering, 2016, 108: 958–966.

    Article  Google Scholar 

  5. [5]

    Koutsonikolasa D., Kaldisb S., Zaspalisa V.T., Sakellaropoulos G.P., Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation. International Journal of Hydrogen Energy, 2012, 37(21): 16302–16307.

    Article  Google Scholar 

  6. [6]

    Ashfaq A.B., Samamtha B.C., Displacement of the benzene solvent molecule from Cr(CO)5(benzene) by piperidine: a laser flash photolysis experiment. Journal of Chemical Education, 2000, 77(10): 1348–1351.

    Article  Google Scholar 

  7. [7]

    Gao X.X., Gu Q., Ma J.Q., Zeng Y.F., MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture. Energy, 2018, 143: 658–665.

    Article  Google Scholar 

  8. [8]

    Kumar S., Gaba T., Simulation of catalytic dehydrogenation of cyclohexane in zeolite membrane reactor. International Journal of Chemical Reactor Engineering, 2009, 7(1): 1–36.

    Article  Google Scholar 

  9. [9]

    Xia Z.J., Lu H.F., Liu H.Y., Zhang Z.K., Chen Y.F., Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: Effect of copper addition. Catalysis Communications, 2017, 90: 39–42.

    Article  Google Scholar 

  10. [10]

    Xia Z.J., Liu H.Y., Lu H.F., Zhang Z.K., Chen Y.F., Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation. Applied Surface Science, 2017, 422: 905–912.

    ADS  Article  Google Scholar 

  11. [11]

    Villaluenga J.P.G., Tabe-Mohammadi A., A review on the separation of benzene/cyclohexane mixtures by pervaporation processes. Journal of Membrane Science, 2020, 169(2): 159–174.

    Article  Google Scholar 

  12. [12]

    Itoh N., A Membrane Reactor Using Palladium. AIChE Journal, 1987, 33(9): 1576–1578.

    Article  Google Scholar 

  13. [13]

    DeLancey G.B., Kovenklioglu S., Ritter A.B., Schneider J.C., Cyclohexane dehydrogenation for thermochemical energy conversion. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(4): 639–645.

    Article  Google Scholar 

  14. [14]

    Farsi M., Jahanmiri A., Mathematical simulation and optimization of methanol dehydration and cyclohexane dehydrogenation in a thermally coupled dual-membrane reactor. International Journal of Hydrogen Energy, 2011, 36 (22): 14416–14427.

    Article  Google Scholar 

  15. [15]

    Itoh N., A membrane reactor using palladium. American Institute of Chemical Engineers Journals, 1987, 33(9): 1576–1578.

    Article  Google Scholar 

  16. [16]

    Jeong B.H., Sotowa K.I., Kusakabe K., Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor. Journal of Membrane Science, 2003, 224 (1–2): 151–158.

    Article  Google Scholar 

  17. [17]

    Hatlevik Ø., Gade S.K., Keeling M.K., Thoen P.M., Davidson A.P., Way J.D., Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance. Separation and Purification Technology, 2010, 73(1): 59–64.

    Article  Google Scholar 

  18. [18]

    Wang H.S., Liu M.K., Kong H., Hao Y., Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors. Apply Thermal Engineering, 2018, 152: 925–936.

    Article  Google Scholar 

  19. [19]

    Wang B.Z., Kong H., Wang H.S., Wang Y.P., Hu X.J., Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor. International Journal of Hydrogen Energy, 2019, 44(49): 26874–26887.

    Article  Google Scholar 

  20. [20]

    Uemiya S., Matsuda T., Kikuchi E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science, 1991, 56(3): 315–325.

    Article  Google Scholar 

  21. [21]

    Collins J.P., Way J.D., Preparation and characterization of a composite palladium-ceramic membrane. Industrial & Engineering Chemistry Research, 1993, 32(12): 3006–3013.

    Article  Google Scholar 

  22. [22]

    Morrealeb B.D., Cioccob M.V., Enickc R.M., Morsic B.I., Howarda B.H., Cuginia A.V., Rothenbergera K.S., The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. Journal of Membrane Science, 2003, 212(1–2): 87–97.

    Article  Google Scholar 

  23. [23]

    Young J.R., Purity of hydrogen permeating through Pd, Pd-25% Ag and Ni. Review of Scientific Instruments, 1963, 34 (8): 891–892.

    ADS  Article  Google Scholar 

  24. [24]

    Schwartz S.E., Does fossil fuel combustion lead to global warming? Energy, 1993, 18(12): 1229–1248.

    Article  Google Scholar 

  25. [25]

    Uemiya S., Matsuda T., Kikuchi E., Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science, 1991, 56(3): 315–325.

    Article  Google Scholar 

  26. [26]

    Xu L., Sun F.H., Ma L.R., Li X.L., Yuan G.F., Lei D.Q., Zhu H.B., Zhang Q.Q., Xu E.S., Wang Z.F., Analysis of the influence of heat loss factors on the overall performance of utility-scale parabolic trough solar collectors. Energy, 2018, 162: 1077–1091.

    Article  Google Scholar 

  27. [27]

    Tou M., Michalsky R., Steinfeld A., Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor. Joule, 2017, 1(1): 146–154.

    Article  Google Scholar 

  28. [28]

    Wang H.S., Hao Y., Kong H., Thermodynamic study on solar thermochemical fuel production with oxygen permeation membrane reactors. International Journal of Energy Research, 2015, 39(13): 1790–1799.

    Article  Google Scholar 

  29. [29]

    Kong H., Kong X.H., Wang H.S., Wang J., A strategy for optimizing efficiencies of solar thermochemical fuel production based on nonstoichiometric oxides. International Journal of Hydrogen Energy, 2019, 44(36): 19585–19594.

    Article  Google Scholar 

  30. [30]

    Price H., Lüpfert E., Kearney D., Zarza E., Cohen G., Gee R., Mahoney R., Advances in parabolic trough solar power technology. Journal of Solar Energy Engineering, 2002, 124(2): 109–125.

    Article  Google Scholar 

  31. [31]

    Geyer M., Lüpfert E., Osuna R., Esteban A., Schiel W., Schweitzer A., Zarza E., Nava P., Langenkamp J., Mandelberg E., EUROTROUGH–Parabolic trough collector developed for cost efficient solar power generation. 11th International Symposium on Concentrating Solar Power and Chemical Energy Technologies, Zurich, Switzerland, 2002, 9: 4–6.

  32. [32]

    Wang H.S., Wang B.Z., Kong H., Lu X.F., Hu X.J., Thermodynamic analysis of methylcyclohexane dehydrogenation and solar energy storage via solar-driven hydrogen permeation membrane reactor. Membranes, 2020, 10(12): 374.

    Article  Google Scholar 

  33. [33]

    Sun J., Liu Q., Hong H., Numerical study of parabolic-trough direct steam generation loop in recirculation mode: Characteristics, performance and general operation strategy. Energy Conversion and Management, 2015, 96: 287–302.

    Article  Google Scholar 

  34. [34]

    Ishida M., Kawamura K., Energy and exergy analysis of a chemical process system with distributed parameters based on the enthalpy-direction factor diagram. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 690–695.

    Article  Google Scholar 

  35. [35]

    Bai Z., Liu Q.B., Gong L., Lei J., Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production. Applied Energy, 2019, 253: 113491.

    Article  Google Scholar 

  36. [36]

    Wang H.S., Li W.J., Liu T., Liu X., Hu X.J., Thermodynamic analysis and optimization of photovoltaic/thermal hybrid hydrogen generation system based on complementary combination of photovoltaic cells and proton exchange membrane electrolyzer. Energy Conversion and Management, 2019, 183: 97–108.

    Article  Google Scholar 

  37. [37]

    Li W.J., Wang H.S., Hao Y., A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation. Science Bulletin, 2017, 62(20): 1380–1387.

    ADS  Article  Google Scholar 

  38. [38]

    Morreale B.D., Ciocco M.V., Enick R.M., Morsi B.I., Howard B.H., Cugini A.V., Rothenberger K.S., The permeability of hydrogen in bulk palladium at elevated temperatures and pressures. Journal of Membrane Science, 2003, 212(1–2): 87–97.

    Article  Google Scholar 

  39. [39]

    HSC chemistry 5.11, 2001–2002, Outokumpu Research Oy, Pori, Finland, A. Roine.

  40. [40]

    Wang H.S., Hao Y., Thermodynamic study of solar thermochemical methane steam reforming with alternating H2 and CO2 permeation membranes reactors. Energy Procedia, 2017, 105: 1980–1985.

    Article  Google Scholar 

  41. [41]

    Wang H.S., Wang B.Z, Qi X.Y., Wang J., Yang R.F., Li D.X., Hu X.J., Innovative non-oxidative methane dehydroaromatization via solar membrane reactor. Energy, 2021, 216: 119265.

    Article  Google Scholar 

  42. [42]

    Bulfin B., Call F., Lange M., Lóbben O., Sattler C., Pitz-Paal R., Shvets I.V., Thermodynamics of CeO2〉 thermochemical fuel production. Energy Fuel, 2015, 29 (2): 1001–1009.

    Article  Google Scholar 

  43. [43]

    Wang H.S., Kong H., Pu Z.G., Li Y., Hu X.J., Feasibility of high efficient solar hydrogen generation system integrating photovoltaic cell/photon-enhanced thermionic emission and high-temperature electrolysis cell. Energy Conversion and Management, 2020, 210: 112699.

    Article  Google Scholar 

  44. [44]

    Li W.J., Jin J., Wang H.S., Wei X., Ling Y.Y., Hao Y., Gang P., Jin H.G., Full-spectrum solar energy utilization integrating spectral splitting, photovoltaics and methane reforming. Energy Conversion and Management, 2018, 173: 602–612.

    Article  Google Scholar 

  45. [45]

    Li W.J., Hao Y., Wang H.S., Liu H., Sui J., Efficient and low–carbon heat and power cogeneration with photovoltaics and thermochemical storage. Applied Energy, 2017, 206: 1523–1531.

    Article  Google Scholar 

Download references


This work is funded by the National Natural Science Foundation of China (No. 51906179), the China Scholarship Council (No. 201906275035), and the National Key Research and Development Program of China (No. 2018YFC0808401).

Author information



Corresponding author

Correspondence to Hongsheng Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, B., Wang, M. et al. Cyclohexane Dehydrogenation in Solar-Driven Hydrogen Permeation Membrane Reactor for Efficient Solar Energy Conversion and Storage. J. Therm. Sci. (2021).

Download citation


  • cyclohexane dehydrogenation
  • solar energy utilization
  • membrane reactor
  • kinetic and thermodynamic analysis
  • hydrogen generation
  • solar thermochemistry