Journal of Thermal Science

, Volume 27, Issue 3, pp 259–269 | Cite as

Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine

  • Dario Barsi
  • Andrea Perrone
  • Yonglei Qu
  • Luca Ratto
  • Gianluca Ricci
  • Vitaliy Sergeev
  • Pietro Zunino
Article
  • 17 Downloads

Abstract

Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery components efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial inflow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fully 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment.

Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh generation and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.

Keywords

Micro-gas turbine Multidisciplinary Optimization Centrifugal Compressor Centripetal Turbine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mueller L., Alsalihi Z., Verstraete T. Multidisciplinary Optimization of Turbocharger Radial Turbine. Journal of Turbomachinery, 2013, 135(2): 021022.CrossRefGoogle Scholar
  2. [2]
    Verstraete T., Alsalihi Z., Van den Braembussche R. Multidisciplinary Optimization of a Radial Compressor for Micro gas Turbine Applications. Journal of Turbomachinery, 2010, 132(3): 031004.CrossRefGoogle Scholar
  3. [3]
    Barsi D., Perrone A., Ratto L., Simoni D., Zunino P. Radial inflow turbine design through Multidisciplinary optimization technique. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 Montreal, Canada, June 15–19: 2015.Google Scholar
  4. [4]
    Perrone A., Ratto L., Ricci G., Satta F., Zunino P. Multi-Disciplinary Optimization of a Centrifugal Compressor for Micro-Turbine Applications. ASME Turbo Expo 2016: Turbine Technical Conference and Exposition GT2016, Seul, South Corea, June 13–17, 2016.CrossRefGoogle Scholar
  5. [5]
    Zunino P. Advanced design of micro-gas-turbines for distributed co-generation, Invited Lecture at Next Turbine, Shanghai, China, 2015.Google Scholar
  6. [6]
    GTcycle, https://github.com/ampsolutions/gtcycle (accessed 2 February 2017).Google Scholar
  7. [7]
    Cumpsty N. A.. Compressor aerodynamics, Longman Scientific & Technical, England, 1989.Google Scholar
  8. [8]
    Rothe P. H., Johnston J. P. Effects of system rotation on the performance of two-dimensional diffusers, Journal of Fluids Engineering, 1976, 98.3: 422–429.CrossRefGoogle Scholar
  9. [9]
    Moore J. A Wake and an Eddy in a Rotating, Radial-Flow Passage- Part 1: Experimental Observations, Part 2, Flow Model. Journal of Engineering for Power, 1973, 95(3): 205–219.CrossRefGoogle Scholar
  10. [10]
    Casey M., Gersbach F., Robinson C. An optimization technique for radial compressor impellers. ASME Turbo Expo 2008, Berlin, Germany, June 9–13, 2008: 2401–2411.Google Scholar
  11. [11]
    Eckardt, D. Detailed flow investigations within a high-speed centrifugal compressor impeller. Journal of Fluids Engineering, 1976, 98(3): 390–399.CrossRefGoogle Scholar
  12. [12]
    Krain H. Swirling impeller flow. Journal of Turbomachinery, 1988, 110.1: 122–128.CrossRefGoogle Scholar
  13. [13]
    Wang Y., Wang K., Tong Z., Lin F., Nie C., Engeda A. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system. Journal of Thermal Science, 2013, 22(5): 404–412.ADSCrossRefGoogle Scholar
  14. [14]
    Whitfield A, Baines N. C.. Design of radial turbomachines, Longman Scientific & Technical, 1990.Google Scholar
  15. [15]
    Rohlik H. E., Radial-inflow turbines, Glassmann A J (Editor). Turbine design and application, 1975, NASA SP 290, 3.Google Scholar
  16. [16]
    Chen H., Baines N. C. Analytical optimization design of radial and mixed flow turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1992, 206 (3): 177–187.CrossRefGoogle Scholar
  17. [17]
    Cox G. D., Fischer C., Casey M. V. The application of through flow optimisation to the design of radial and mixed flow turbines. 9th International Conference on Turbochargers and Turbocharging, 2010, London: 217–226.Google Scholar
  18. [18]
    NUMECA, User manuals. Academic R&D license 2017.Google Scholar
  19. [19]
    Hirsch C., Lacor C., Rizzi A., Eliasson P., Lindblad I., Haeuser J. A multiblock/multigrid code for the efficient solution of complex 3D Navier-Stokes flows. Aerothermodynamics for Space Vehicles 1, 1991, SEE N92-14973 06-02: 415–420.Google Scholar
  20. [20]
    Bourgeois J.A., Martinuzzi R.J., Savory E., Zhang C., Roberts D.A. Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor. ASME. Journal of Turbomachinery, 2011, 133(1): 011025.CrossRefGoogle Scholar
  21. [21]
    Mangani L., Casartelli E., Mauri S. Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code. ASME. Journal of Turbomachinery, 2012, 134(6): 061033CrossRefGoogle Scholar
  22. [22]
    Van den Braembussche R.A., Prinsier J., Di Sante A. Experimental and numerical investigation of the flow in rotating diverging channels. Journal of Thermal Science, 2010, 19(2): 115–119.ADSCrossRefGoogle Scholar
  23. [23]
    Geuzaine C., Remacle J. F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and postprocessing facilities. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309–1331.ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    CALCULIX, A Free Software Three-Dimensional Structural Finite Element Program, https://www.calculix.de (accessed 23 November 2016).Google Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dario Barsi
    • 1
  • Andrea Perrone
    • 1
  • Yonglei Qu
    • 2
  • Luca Ratto
    • 1
  • Gianluca Ricci
    • 1
  • Vitaliy Sergeev
    • 3
  • Pietro Zunino
    • 1
  1. 1.Department of Mechanical, Energy, Management and Transport EngineeringUniversità degli Studi di GenovaGenovaItaly
  2. 2.Faculty of Power and Energy EngineeringHarbin Engineering UniversityHarbinChina
  3. 3.Institute of Energy and Transport Systems“Peter the Great” St. Petersburg Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations