Skip to main content

Advertisement

Log in

Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery components efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial inflow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fully 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment.

Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh generation and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mueller L., Alsalihi Z., Verstraete T. Multidisciplinary Optimization of Turbocharger Radial Turbine. Journal of Turbomachinery, 2013, 135(2): 021022.

    Article  Google Scholar 

  2. Verstraete T., Alsalihi Z., Van den Braembussche R. Multidisciplinary Optimization of a Radial Compressor for Micro gas Turbine Applications. Journal of Turbomachinery, 2010, 132(3): 031004.

    Article  Google Scholar 

  3. Barsi D., Perrone A., Ratto L., Simoni D., Zunino P. Radial inflow turbine design through Multidisciplinary optimization technique. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015 Montreal, Canada, June 15–19: 2015.

    Google Scholar 

  4. Perrone A., Ratto L., Ricci G., Satta F., Zunino P. Multi-Disciplinary Optimization of a Centrifugal Compressor for Micro-Turbine Applications. ASME Turbo Expo 2016: Turbine Technical Conference and Exposition GT2016, Seul, South Corea, June 13–17, 2016.

    Book  Google Scholar 

  5. Zunino P. Advanced design of micro-gas-turbines for distributed co-generation, Invited Lecture at Next Turbine, Shanghai, China, 2015.

    Google Scholar 

  6. GTcycle, https://github.com/ampsolutions/gtcycle (accessed 2 February 2017).

  7. Cumpsty N. A.. Compressor aerodynamics, Longman Scientific & Technical, England, 1989.

    Google Scholar 

  8. Rothe P. H., Johnston J. P. Effects of system rotation on the performance of two-dimensional diffusers, Journal of Fluids Engineering, 1976, 98.3: 422–429.

    Article  Google Scholar 

  9. Moore J. A Wake and an Eddy in a Rotating, Radial-Flow Passage- Part 1: Experimental Observations, Part 2, Flow Model. Journal of Engineering for Power, 1973, 95(3): 205–219.

    Article  Google Scholar 

  10. Casey M., Gersbach F., Robinson C. An optimization technique for radial compressor impellers. ASME Turbo Expo 2008, Berlin, Germany, June 9–13, 2008: 2401–2411.

    Google Scholar 

  11. Eckardt, D. Detailed flow investigations within a high-speed centrifugal compressor impeller. Journal of Fluids Engineering, 1976, 98(3): 390–399.

    Article  Google Scholar 

  12. Krain H. Swirling impeller flow. Journal of Turbomachinery, 1988, 110.1: 122–128.

    Article  Google Scholar 

  13. Wang Y., Wang K., Tong Z., Lin F., Nie C., Engeda A. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system. Journal of Thermal Science, 2013, 22(5): 404–412.

    Article  ADS  Google Scholar 

  14. Whitfield A, Baines N. C.. Design of radial turbomachines, Longman Scientific & Technical, 1990.

    Google Scholar 

  15. Rohlik H. E., Radial-inflow turbines, Glassmann A J (Editor). Turbine design and application, 1975, NASA SP 290, 3.

  16. Chen H., Baines N. C. Analytical optimization design of radial and mixed flow turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1992, 206 (3): 177–187.

    Article  Google Scholar 

  17. Cox G. D., Fischer C., Casey M. V. The application of through flow optimisation to the design of radial and mixed flow turbines. 9th International Conference on Turbochargers and Turbocharging, 2010, London: 217–226.

    Google Scholar 

  18. NUMECA, User manuals. Academic R&D license 2017.

    Google Scholar 

  19. Hirsch C., Lacor C., Rizzi A., Eliasson P., Lindblad I., Haeuser J. A multiblock/multigrid code for the efficient solution of complex 3D Navier-Stokes flows. Aerothermodynamics for Space Vehicles 1, 1991, SEE N92-14973 06-02: 415–420.

    Google Scholar 

  20. Bourgeois J.A., Martinuzzi R.J., Savory E., Zhang C., Roberts D.A. Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor. ASME. Journal of Turbomachinery, 2011, 133(1): 011025.

    Article  Google Scholar 

  21. Mangani L., Casartelli E., Mauri S. Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code. ASME. Journal of Turbomachinery, 2012, 134(6): 061033

    Article  Google Scholar 

  22. Van den Braembussche R.A., Prinsier J., Di Sante A. Experimental and numerical investigation of the flow in rotating diverging channels. Journal of Thermal Science, 2010, 19(2): 115–119.

    Article  ADS  Google Scholar 

  23. Geuzaine C., Remacle J. F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and postprocessing facilities. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309–1331.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. CALCULIX, A Free Software Three-Dimensional Structural Finite Element Program, https://www.calculix.de (accessed 23 November 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Zunino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsi, D., Perrone, A., Qu, Y. et al. Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine. J. Therm. Sci. 27, 259–269 (2018). https://doi.org/10.1007/s11630-018-1007-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-018-1007-2

Keywords

Navigation