Skip to main content
Log in

Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelino G, Invernizzi C. Prospects for real-gas reversed Brayton cycle heat pumps. International Journal of Refrigeration, 1995, 18(4): 272–280.

    Article  Google Scholar 

  2. Perez-Blanco H, Vineyard E. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant. Applied Thermal Engineering, 2016, 104: 818–828.

    Article  Google Scholar 

  3. Galea M, Sant T. Coupling of an offshore wind-driven deep sea water pump to an air cycle machine for largescale cooling applications. Renewable Energy, 2016, 88: 288–306.

    Article  Google Scholar 

  4. Giannetti N, Milazzo A, Rocchetti A, Saito K. Cascade refrigeration system with inverse Brayton cycle on the cold side. Applied Thermal Engineering, 2017, 127: 986–995.

    Article  Google Scholar 

  5. Goodarzi M, Kiasat M and Khalilidehkordi E. Performance analysis of a modified regenerative Brayton and inverse Brayton cycle. Energy, 2014, 72(7): 35–43.

    Article  Google Scholar 

  6. Giles G R. Environmentally friendly air cycle air conditioning. Proceedings of the Institute of Refrigeration, 1998-99, 1–10.

  7. Li S S, Wang S G, Ma Z J, Jiang S, Zhang T F. Using an air cycle heat pump system with a turbocharger to supply heating for full electric vehicles. International Journal of Refrigeration, 2017, 77: 11–19.

    Article  Google Scholar 

  8. Zhang Q C, Wang S G, Li S S, Wang J H, Zhang T F. Performance analysis of an air cycle heat pump with a turbocharger driven by a blower. Procedia Engineering, 2017, 205: 2720–2727.

    Article  Google Scholar 

  9. Butler D J G, Holder D. Air cycle technologies for building services. Proceedings of the 1996 CIBSE/ASHRAE Joint National Conference, Harrogate, 29th, Sept.-1st, Oct., 1996. CIBSE, London, 1996.

    Google Scholar 

  10. Nóbrega C E L, Sphaier L A. Desiccant-assisted humidity control for air refrigeration cycles. International Journal of Refrigeration, 2013, 36(4):1183–1190.

    Article  Google Scholar 

  11. Heikkinen M A, Lampinen M J, Tamasy-Bano M. Thermodynamic analysis and optimization of the Brayton process in a heat recovery system of paper machines. Heat Recovery Systems and CHP, 1993, 13(2): 123–131.

    Article  Google Scholar 

  12. Braun J E, Bansal P K, Groll E A. Energy efficiency analysis of air cycle heat pump dryers. International Journal of Refrigeration, 2002, 25 (7): 954–965.

    Article  Google Scholar 

  13. Foster A M, Brown T, Gigiel A J, Alford A, Evans J A. Air cycle combined heating and cooling for the food industry. International Journal of Refrigeration, 2011, 34(5): 1296–1304.

    Article  Google Scholar 

  14. Zhang C, Yuan H. An important feature of air heat pump cycle: heating capacity in line with heating load. Energy, 2014, 72(7): 405–413.

    Article  Google Scholar 

  15. Zhang C L, Yuan H, Cao X. New insight into regenerated air heat pump cycle. Energy, 2015, 91: 226–234.

    Article  Google Scholar 

  16. Yuan H, Zhang C L. Regenerated air cycle potentials in heat pump applications. International Journal of Refrigeration, 2015, 51(5): 1–11.

    Article  Google Scholar 

  17. Yang L, Yuan H, Peng J W, Zhang C L. Performance modeling of air cycle heat pump water heater in cold climate. Rene. Energy, 2016, 87: 1067–1075.

    Article  Google Scholar 

  18. White A J. Thermodynamic analysis of the reverse Joule–Brayton cycle heat pump for domestic heating. Applied Energy, 2009, 86(11): 2443–2450.

    Article  Google Scholar 

  19. Kim Y M, Favrat D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy, 2010, 35(1): 213–220.

    Article  Google Scholar 

  20. Andresen B, Berry R S, Ondrechen M J, Salamon P. Thermodynamics for processes in finite time. Accounts of Chemical Research, 1984, 17(8): 266–271.

    Article  Google Scholar 

  21. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 1996, 79(3): 1191–1218.

    Article  ADS  Google Scholar 

  22. Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M. Thermodynamic Optimization of Finite Time Processes. Wiley, Chichester, 1999.

    Google Scholar 

  23. Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. Journal of Non-Equilibrium Thermodynamics, 1999, 24(4): 327–359.

    Article  ADS  MATH  Google Scholar 

  24. Wu C, Chen L G, Chen J C. Recent Advances in Finite Time Thermodynamics. Nova Science Publishers, New York, 1999.

    Google Scholar 

  25. Huang Z M, Wu F, Chen L G, Wu C, Guo F Z. Performance optimization for an irreversible quantum Stirling cooler. Journal of Thermal Science, 2002, 11(3): 193–197.

    Article  ADS  Google Scholar 

  26. Chen L G, Sun F R. Advances in finite time thermodynamics: Analysis and optimization. Nova Science Publishers, New York, 2004.

    Google Scholar 

  27. Durmayaz A, Sogut O S, Sahin B, Yavuz H. Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Progress in Energy & Combustion Science, 2004, 30(2): 175–217.

    Article  Google Scholar 

  28. Chen L G. Finite-Time thermodynamic analysis of irreversible processes and cycles. Higher Education Press, Beijing, 2005(in Chinese).

    Google Scholar 

  29. Andresen B. Current trends in finite-time thermodynamics. Angewandte Chemie International Edition, 2011, 50(12): 2690–2704.

    Article  Google Scholar 

  30. Ge Y L, Chen L G, Sun F R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18(4): 139.

    Article  ADS  Google Scholar 

  31. Sieniutycz S. Thermodynamic approaches in engineering systems. Elsevier, Oxford, 2016.

    Google Scholar 

  32. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimizations for thermoelectric devices: the state of the arts. Science China Technological Sciences, 2016, 2016, 59(3): 442–455.

    Article  Google Scholar 

  33. Han C H, Kim K H. Entransy and exergy analyses for optimizations of heat-work conversion with Carnot cycle. Journal of Thermal Science, 2016, 25(3): 242–249.

    Article  ADS  Google Scholar 

  34. Chen L G, Xia S J. Generalized thermodynamic dynamic-optimization for irreversible processes. Science Press, Beijing, 2017. (in Chinese)

    Google Scholar 

  35. Chen L G, Xia S J. Generalized thermodynamic dynamic-optimization for irreversible cycles–thermodynamic and chemical theoretical cycles. Science Press, Beijing, 2017. (in Chinese)

    Google Scholar 

  36. Chen L G, Xia S J. Generalized thermodynamic dynamic-optimization for irreversible cycles–engineering thermodynamic plants and generalized engine cycles. Science Press, Beijing, 2017. (in Chinese)

    Google Scholar 

  37. Bi Y H, Chen L G. Finite time thermodynamic optimization for air heat pumps. Science Press, Beijing, 2017.(in Chinese)

    Google Scholar 

  38. Giannetti N, Milazzo A. Thermodynamic analysis of regenerated air-cycle refrigeration in high and low pressure configuration. International Journal of Refrigeration, 2014, 40(3): 97–110.

    Article  Google Scholar 

  39. Zhang W L, Chen L G, Sun F R. Thermodynamic optimization for open regenerated inverse Brayton cycle (refrigeration/ heat pump cycle). Part 1: Thermodynamic modeling. Journal of the Energy Institute, 2012, 85(2): 86–95.

    Article  Google Scholar 

  40. Zhang W L, Chen L G, Sun F R. Thermodynamic optimization for open regenerated inverse Brayton cycle (refrigeration/ heat pump cycle) part 2-performance optimization. Journal of the Energy Institute, 2012, 85(2): 96–102.

    Article  Google Scholar 

  41. Ahmadi M H, Ahmadi M A, Pourfayaz F and Bidi M. Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle. Energy Conversion and Management, 2016, 110: 260–267.

    Article  Google Scholar 

  42. Santa R, Garbai L, Fürstner I. Optimization of heat pump system. Energy, 2015, 89: 45–54.

    Article  Google Scholar 

  43. Wu C, Chen L G, Sun F R. Optimization of steady flow heat pumps. Energy Conversion and Managemen, 1998, 39(5/6): 445–453.

    Article  Google Scholar 

  44. Nawaz K, Shen B, Elatar A, Baxter V, Abdelaziz O. Performance optimization of CO2 heat pump water heater. International Journal of Refrigeration, 2018, 85: 213–228.

    Article  Google Scholar 

  45. Marmaras J, Burbank J, Kosanovic D. Primary-secondary de-coupled ground source heat pump systems coefficient of performance optimization through entering water temperature control. Applied Thermal Engineering, 2016, 96: 107–116.

    Article  Google Scholar 

  46. Chen L G, Ni N, Wu C, Sun F R. Performance analysis of a closed regenerated Brayton heat pump with internal irreversibilities. International Journal of Energy Research, 1999, 23(12): 1039–1050.

    Article  Google Scholar 

  47. Ni N, Chen L G, Wu C, Sun F R. Performance analysis for endoreversible closed regenerated Brayton heat pump cycles. Energy Conversion and Managemen, 1999, 40(4): 393–406.

    Article  Google Scholar 

  48. Erbay L B, Yavuz H L. Maximum heating density of a Stirling heat pump. ECOS98, Nancy, France, 1998: 533–539.

    Google Scholar 

  49. Bi Y H, Chen L G, Sun F R. Heating load, heating load density and COP optimizations for an endoreversible air heat pump. Applied Energy, 2008, 85(7): 607–617.

    Article  Google Scholar 

  50. Bi Y H, Chen L G, Sun F R. Heating load, heating load density and COP optimizations for an endoreversible variable-temperature heat reservoir air heat pump. Journal of the Energy Institute, 2009, 82(1): 43–47.

    Article  Google Scholar 

  51. Bi Y H, Xie G Z, Chen L G, Sun F R. Heating load density optimization of an irreversible simple Brayton cycle heat pump coupled to counter-flow heat exchangers. Applied Mathematical Modelling, 2012, 36(5): 1854–1863.

    Article  Google Scholar 

  52. Qin G, Li M, Cheng E X. Air refrigerator. National Defense Industry Press, Beijing, 1980(in Chinese).

    Google Scholar 

  53. Qureshi B A. Thermoeconomic considerations in the allocation of heat transfer inventory for irreversible power systems. Applied Thermal Engineering, 2015, 90: 305–311.

    Article  Google Scholar 

  54. Qureshi B A, Zubair S M. Thermoeconomic considerations in the allocation of heat transfer inventory for irreversible refrigeration and heat pump systems. International Journal of Refrigeration, 2015, 54: 67–75.

    Article  Google Scholar 

  55. Li Y, Yu J. Theoretical analysis on optimal configurations of heat exchanger and compressor in a two-stage compression air source heat pump system. Applied Thermal Engineering, 2016, 96: 682–689.

    Article  Google Scholar 

  56. Qin X Y, Chen L G, Xia, S J. Ecological performance of four-temperature-level absorption heat transformer with heat resistance, heat leakage and internal irreversibility. International Journal of Heat and Mass Transfer, 2017, 114: 252–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Additional information

This work was supported by National Natural Science Foundation of China (NSFC) under the contracts No.51776008 and No.51376012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Y., Chen, L., Ding, Z. et al. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect. J. Therm. Sci. 27, 223–229 (2018). https://doi.org/10.1007/s11630-018-1003-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-018-1003-6

Keywords

Navigation