Skip to main content
Log in

On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In the present investigation, we demonstrate the capabilities of the discontinuous Galerkin spectral element method for high order accuracy computation of gas dynamics. The internal flow field of a natural gas injector for bivalent combustion engines is investigated under its operating conditions. The simulations of the flow field and the aeroacoustic noise emissions were in a good agreement with the experimental data. We tested several shock-capturing techniques for the discontinuous Galerkin scheme. Based on the validated framework, we analyzed the development of the supersonic jets during different opening procedures of a compressed natural gas injector. The results suggest that a more gradual injector opening decreases the noise emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. Tam, N. N. Pastouchenko, and R. H. Schlinker, “Noise source distribution in supersonic jets”, Journal of Sound and Vibration, Vol. 291, no. 1, pp. 192–201, 2006.

    Article  ADS  MATH  Google Scholar 

  2. H. Tanna, “An experimental study of jet noise part ii: Shock associated noise”, Journal of Sound and Vibra tion, Vol. 50, no. 3, pp. 429–444, 1977.

    Article  ADS  Google Scholar 

  3. C. K. Tam, “Supersonic jet noise”, Annual Review of Fluid Mechanics, Vol. 27, no. 1, pp. 17–43, 1995.

    Article  ADS  Google Scholar 

  4. G. Raman, “Supersonic jet screech: half-century from Powell to the present”, Journal of Sound and Vibration, Vol. 225, no. 3, pp. 543–571, 1999.

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Munday, E. Gutmark, J. Liu, and K. Kailasanath, “Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles”, Physics of Fluids (1994-present), Vol. 23, no. 11, p. 116102, 2011.

    Article  ADS  Google Scholar 

  6. S. Pirozzoli, “Numerical methods for high-speed flows”, Annual Review of Fluid Mechanics, Vol. 43, pp. 163–194, 2011.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. White and B. Milton, “Shock wave calibration of under-expanded natural gas fuel jets”, Shock Waves, Vol. 18, no. 5, pp. 353–364, 2008.

    Article  ADS  Google Scholar 

  8. V. Vuorinen, J. Yu, S. Tirunagari, O. Kaario, M. Larmi, C. Duwig, and B. Boersma, “Large-eddy simulation of highly underexpanded transient gas jets”, Physics of Fluids (1994-present), Vol. 25, no. 1, p. 016101, 2013.

    Article  ADS  Google Scholar 

  9. O. Schönrock, Numerical prediction of flow induced noise in free jets of high Mach numbers. PhD thesis, Faculty of Aerospace Engineering and Geodesy of the Universit at Stuttgart, 2009.

    Google Scholar 

  10. T. Kraus, F. Hindenlang, D. F. Harlacher, C.-D. Munz, and S. Roller, “Direct aeroacoustic simulation of near field noise during a gas injection process with a discontinuous Galerkin approach,” 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). Colorado Springs, CO, 2012.

    Google Scholar 

  11. A. Schmidt, “Experimentelle Untersuchung einer Gasströmung durch ein CNG-Injektorventil mittels Particle-Image-Velocimetry (PIV),” Master’s thesis, Institute of Mechanics of the University of Kassel, 2012.

    Google Scholar 

  12. A. D. Beck, T. Bolemann, D. Flad, H. Frank, G. J. Gassner, F. Hindenlang, and C.-D. Munz, “Highorder discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations”, International Journal for Numerical Methods in Fluids, Vol. 76, no. 8, pp. 522–548, 2014.

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Altmann, A. D. Beck, F. Hindenlang, M. Staudenmaier, G. J. Gassner, and C.-D. Munz, “An efficient high performance parallelization of a discontinuous Galerkin spectral element method”, Facing the Multicore-Challenge III, Vol. 7686, pp. 37–47, 2013.

    Article  Google Scholar 

  14. C. de Wiart and K. Hillewaert, “Development and validation of a massively parallel high-order solver for DNS and LES of industrial flows,” in IDIHOM: Industrialization of High-Order Methods -A Top-Down Approach, Springer International Publishing, Berlin, Heidelberg, 2015.

    Google Scholar 

  15. F. Hindenlang, G. Gassner, C. Altmann, A. Beck, M. Staudenmaier, and C.-D. Munz, “Explicit discontinuous Galerkin methods for unsteady problems”, Computers & Fluids, Vol. 61, pp. 86–93, 2012.

    Article  MathSciNet  Google Scholar 

  16. D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Publishing Company, Inc., Berlin, Heidelberg, 1st ed., 2009.

    Book  MATH  Google Scholar 

  17. F. Bassi and S. Rebay, “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations”, Journal of Computational Physics, Vol. 131, no. 2, pp. 267–279, 1997.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Heidelberg, 2009.

    Book  MATH  Google Scholar 

  19. D. G. Flad, H. M. Frank, A. D. Beck, and C.-D. Munz, “A discontinuous Galerkin spectral element method for the direct numerical simulation of aeroacoustics,” In Proceedings of the American Institute of Aeronautics and Astronautics, 2014.

    Google Scholar 

  20. C. Pruett, B. Thomas, C. Grosch, and T. Gatski, “A temporal approximate deconvolution model for largeeddy simulation”, Physics of Fluids, Vol. 18, no. 2, p. 8104, 2006.

    Article  Google Scholar 

  21. F. Bassi and S. Rebay, “High-order accurate discontinuous finite element solution of the 2d Euler equations”, Journal of Computational Physics, Vol. 138, no. 2, pp. 251–285, 1997.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. F. Hindenlang, G. Gassner, T. Bolemann, and C.-D. Munz, “Unstructured high order grids and their application in discontinuous Galerkin methods,” In Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, 2010.

    Google Scholar 

  23. P.-O. Persson and J. Peraire, “Sub-cell shock capturing for discontinuous Galerkin methods”, In Proceedings of the American Institute of Aeronautics and Astronautics, Vol. 112, 2006.

  24. F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, and T. Poinsot, “Large-eddy simulation of the shock/turbulence interaction”, Journal of Computational Physics, Vol. 152, no. 2, pp. 517–549, 1999.

    Article  ADS  MATH  Google Scholar 

  25. M. Sonntag and C.-D. Munz, “Shock capturing for discontinuous Galerkin methods using finite volume subcells,” in Finite Volumes for Complex Applications VIIElliptic, Parabolic and Hyperbolic Problems, vol. 78 of Springer Proceedings in Mathematics & Statistics, pp. 945–953, Springer International Publishing, Berlin, Heidelberg, 2014.

    Google Scholar 

  26. G. Gassner and A. Beck, “On the accuracy of highorder discretizations for underresolved turbulence simulations”, Theoretical and Computational Fluid Dynamics, Vol. 27, no. 3–4, pp. 221–237, 2013.

    Article  ADS  Google Scholar 

  27. I. Wygnanski and H. Fiedler, “Some measurements in the self-preserving jet”, Journal of Fluid Mechanics, Vol. 38, pp. 577–612, 1969.

    Article  ADS  Google Scholar 

  28. T. Alheit, “Preassure peak at high frequencies for natural gas injector,” 2015. private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hempert, F., Hoffmann, M., Iben, U. et al. On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method. J. Therm. Sci. 25, 250–257 (2016). https://doi.org/10.1007/s11630-016-0857-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-016-0857-8

Keywords

Navigation