Numerical modeling of bed deposition in rapid flow-like landslides: a case study of the Gaolou landslide in Shaanxi Province, China

Abstract

Some flow-like landslides tend to lose materials while moving on a relatively dry sliding surface. This phenomenon is called bed deposition. In contrast to the bed entrainment phenomenon, bed deposition is relatively poorly understood. Therefore, an improved depth-averaged model is proposed to quantify this phenomenon. The deposition depth is calculated according to the momentum conservation of the deposited mass, and the rheological property of the sliding mass on the bottom is modified considering an abrupt increase in the depth of the sliding surface after deposition. Utilizing the proposed model, the Gaolou landslide, a typical flowlike landside occurring on October 6th, 2006 with an obvious bed deposition phenomenon in Shaanxi Province of China, is simulated to investigate the influence of bed deposition on its propagation process. The results indicate that the proposed model can effectively depict the bed deposition phenomenon in the Gaolou landslide. Bed deposition dissipates part of the kinetic energy of this landslide; thus, the simulated debris inundation area would likely be overestimated when this effect is neglected. On the other hand, the thin liquefied layer formed by the bed deposition process reduces the friction energy dissipation, contributing to the high mobility of this landslide.

This is a preview of subscription content, access via your institution.

References

  1. Alonso E, Zervos A, Pinyol N (2016) Thermo-poro-mechanical analysis of landslides: from creeping behaviour to catastrophic failure. Géotechnique 66(2): 202–219. https://doi.org/10.1680/jgeot.15.LM.006

    Article  Google Scholar 

  2. Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97(2): 653–665. https://doi.org/10.1086/629350

    Article  Google Scholar 

  3. Cao Z, Pender G, Wallis S, et al. (2004) Computational dam-break hydraulics over erodible sediment bed. J Hydrol Eng 130(2): 689–703. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(689)

    Article  Google Scholar 

  4. Chen HX, Zhang LM (2015) EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes. Geosci Model Dev 8(2): 829–844. https://doi.org/10.5194/gmd-8-829-2015

    Article  Google Scholar 

  5. Chen X, Cui P, You Y, et al. (2015) Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Eng Geol 194: 73–85. https://doi.org/10.1016/j.enggeo.2014.10.002

    Article  Google Scholar 

  6. Croissant T, Lague D, Davy P, et al. (2017) A precipiton-based approach to model hydro-sedimentary hazards induced by large sediment supplies in alluvial fans. Earth Surf Process Landf 42(2): 2054–2067. https://doi.org/10.1002/esp.4171

    Article  Google Scholar 

  7. Crosta G, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debrisavalanches. Eng Geol 109(1–2): 135–145. https://doi.org/10.1016/j.enggeo.2008.10.004

    Article  Google Scholar 

  8. Cuomo S, Pastor M, Capobianco V, et al. (2016) Modelling the space-time evolution of bed entrainment for flow-like landslides. Eng Geol 212: 10–20. https://doi.org/10.1016/j.enggeo.2016.07.011

    Article  Google Scholar 

  9. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109(2): 67–79. https://doi.org/10.1016/j.enggeo.2008.11.004

    Article  Google Scholar 

  10. Evans SG, Tutubalina OV, Drobyshev VN, et al. (2009) Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105(3–4): 314–321. https://doi.org/10.1016/j.geomorph.2008.10.008

    Article  Google Scholar 

  11. Fraccarollo L, Capart H (2002) Riemann wave description of erosional dam-break flows. J Fluid Mech 461: 183–228. https://doi.org/10.1017/S0022112002008455

    Article  Google Scholar 

  12. Goren L, Aharonov E (2007) Long runout landslides: The role of frictional heating and hydraulic diffusivity. Geophys Res Lett 34(7): L07301. https://doi.org/10.1029/2006GL028895

    Article  Google Scholar 

  13. Haque U, Blum P, Da Silva PF, et al. (2016) Fatal landslides in Europe. Landslides 13(2): 1545–1554. https://doi.org/10.1007/s10346-016-0689-3

    Article  Google Scholar 

  14. Heyman J, Bohorquez P, Ancey C (2016) Entrainment, motion, and deposition of coarse particles transported by water over a sloping mobile bed. J Geophys Res Earth Surf 121(2): 1931–1952. https://doi.org/10.1002/2015JF003672

    Article  Google Scholar 

  15. Huang RQ, Pei XJ, Fan XM, et al. (2012) The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides 9(2): 131–142. https://doi.org/10.1007/s10346-011-0276-6

    Article  Google Scholar 

  16. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116(9–10): 1240–1252. https://doi.org/10.1130/B25362.1

    Article  Google Scholar 

  17. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2): 167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  18. Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res Earth Surf 117(F3): F03006. https://doi.org/10.1029/2011JF002189

    Article  Google Scholar 

  19. Iverson RM, Ouyang CJ (2015) Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Rev Geophys 53(2): 27–58. https://doi.org/10.1002/2013RG000447

    Article  Google Scholar 

  20. Johnson CG, Kokelaar BP, Iverson RM, et al. (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res Earth Surf 117(F1): F01032. https://doi.org/10.1029/2011JF002185

    Article  Google Scholar 

  21. Kang C, Chan D (2018) A progressive entrainment runout model for debris flow analysis and its application. Geomorphology 323: 25–40. https://doi.org/10.1016/j.geomorph.2018.09.003

    Article  Google Scholar 

  22. Kang C, Chan D, Su FH, et al. (2017) Runout and entrainment analysis of an extremely large rock avalanche—a case study of Yigong, Tibet, China. Landslides 14(2): 123–139. https://doi.org/10.1007/s10346-016-0677-7

    Article  Google Scholar 

  23. Li TL, Zhao JF, Li P, et al. (2013) Failure and motion mechanisms of a rapid loess flowslide triggered by irrigation in the Guanzhong irrigation area, Shaanxi, China. In: Wang FW, Miyajima M, Li TL, et al. (eds.), Progress of Geo-Disaster Mitigation Technology in Asia. Springer, Berlin, Heidelberg, pp 421–433.

    Google Scholar 

  24. Liu K-F, Huang MC (2006) Numerical simulation of debris flow with application on hazard area mapping. Computat Geosci 10(2): 221–240. https://doi.org/10.1007/s10596-005-9020-4

    Article  Google Scholar 

  25. Liu W, He S (2020) Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment. Landslides 17(2): 1529–1544. https://doi.org/10.1007/s10346-020-01383-w

    Article  Google Scholar 

  26. Liu W, He S, He Z (2019) Simulation of landslide run-out by considering frictional heating and thermal pressurization. J Mt Sci 16(2): 122–137. https://doi.org/10.1007/s11629-018-5012-4

    Article  Google Scholar 

  27. Mangeney A (2011) Landslide boost from entrainment. Nat Geosci 4(2): 77–78. https://doi.org/10.1038/ngeo1077

    Article  Google Scholar 

  28. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(2): 1437–1448. https://doi.org/10.1139/t05-064

    Article  Google Scholar 

  29. Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5(2): 127–142. https://doi.org/10.1007/s10346-007-0102-3

    Article  Google Scholar 

  30. Mergili M, Frank B, Fischer JT, et al. (2018) Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r. avaflow: Lessons learned for predictive mass flow simulations. Geomorphology 322: 15–28. https://doi.org/10.1016/j.geomorph.2018.08.032

    Article  Google Scholar 

  31. Okada Y, Sassa K, Fukuoka H (2005) Undrained shear behaviour of sands subjected to large shear displacement and estimation of excess pore-pressure generation from drained ring shear tests. Can Geotech J 42(2): 787–803. https://doi.org/10.1139/t05-017

    Article  Google Scholar 

  32. Ouyang C, He S, Tang C (2015) Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng Geol 194: 62–72. https://doi.org/10.1016/j.enggeo.2014.07.012

    Article  Google Scholar 

  33. Ouyang C, He S, Xu Q, et al. (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52: 1–10. https://doi.org/10.1016/j.cageo.2012.08.024

    Article  Google Scholar 

  34. Ouyang C, Zhao W, He S, et al. (2017) Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. J Mt Sci 14(2): 1701–1711. https://doi.org/10.1007/s11629-017-4613-7

    Article  Google Scholar 

  35. Pastor M, Haddad B, Sorbino G, et al. (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2): 143–172. https://doi.org/10.1002/nag.705

    Article  Google Scholar 

  36. Perinotto H, Schneider JL, Bachèlery P, Le Bourdonnec FX, Famin V, Michon L (2015) The extreme mobility of debris avalanches: A new model of transport mechanism. J Geophys Res Solid Earth 120(2): 8110–8119. https://doi.org/10.1002/2015JB011994

    Article  Google Scholar 

  37. Pierson TC, Janda RJ, Thouret JC, et al. (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geoth Res 41(1–4): 17–66. https://doi.org/10.1016/0377-0273(90)90082-Q

    Article  Google Scholar 

  38. Pirulli M, Pastor M (2012) Numerical study on the entrainment of bed material into rapid landslides. Géotechnique 62(2): 959–972. https://doi.org/10.1680/geot.10.P.074

    Article  Google Scholar 

  39. Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117(F3): F03010. https://doi.org/10.1029/2011JF002186

    Article  Google Scholar 

  40. Pudasaini SP, Fischer JT (2016) A mechanical erosion model for two-phase mass flows. arXiv preprint arXiv:161001806. https://arxiv.org/abs/1610.01806v1

  41. Sassa K, He B, Dang K, et al. (2014) Plenary: progress in landslide dynamics. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham, pp 37–67.

    Google Scholar 

  42. Shen W, Li T, Li P, et al. (2019a) A two-layer numerical model for simulating the frontal plowing phenomenon of flow-like landslides. Eng Geol 259: 105168. https://doi.org/10.1016/j.enggeo.2019.105168

    Article  Google Scholar 

  43. Shen W, Li T, Li P, et al. (2018) A modified finite difference model for the modeling of flowslides. Landslides 15(2): 1577–1593. https://doi.org/10.1007/s10346-018-0980-6

    Article  Google Scholar 

  44. Shen W, Li T, Li P, et al. (2019b) The influence of the bed entrainment-induced rheology and topography changes on the propagation of flow-like landslides: a numerical investigation. Bull Eng Geol Environ 78(2): 4771–4785. https://doi.org/10.1007/s10064-018-01447-1

    Article  Google Scholar 

  45. Tsou CY, Feng ZY, Chigira M (2011) Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan. Geomorphology 127(3–4): 166–178. https://doi.org/10.1016/j.geomorph.2010.12.013

    Article  Google Scholar 

  46. Wang G, Huang R, Chigira M, et al. (2013) Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8·0) earthquake, China. Earth Surf Process Landf 38(2): 265–274. https://doi.org/10.1002/esp.3277

    Article  Google Scholar 

  47. Wang YF, Dong JJ, Cheng QG (2017) Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility? J Geophys Res Solid Earth 122(2): 1648–1676. https://doi.org/10.1002/2016JB013624

    Article  Google Scholar 

  48. Xu L, Dai FC, Gong QM, et al. (2012) Irrigation-induced loess flow failure in Heifangtai Platform, north-west China. Environ Earth Sci 66(2): 1707–1713. https://doi.org/10.1007/s12665-011-0950-y

    Article  Google Scholar 

  49. Zhang DX, Wang GH, Luo CY, et al. (2009) A rapid loess flowslide triggered by irrigation in China. Landslides 6(2): 55–60. https://doi.org/10.1007/s10346-008-0135-2

    Article  Google Scholar 

Download references

Acknowledgement

Authors would like to thank the fund received from the National Key R&D Program of China (2017YFC1501302), the National Natural Science Foundation of China (No. 41877242) and the China Scholarship Council (CSC) - University of Bologna Joint Scholarship (File No. 201806560011) which supported this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tong-lu Li or Ping Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, W., Li, Tl., Berti, M. et al. Numerical modeling of bed deposition in rapid flow-like landslides: a case study of the Gaolou landslide in Shaanxi Province, China. J. Mt. Sci. (2021). https://doi.org/10.1007/s11629-020-6164-6

Download citation

Keywords

  • Natural hazards
  • Flow like landslides
  • Numerical simulation
  • Depth-averaged model
  • Bed deposition