Seasonal influence and local factors affecting macroinvertebrate structure in a high-altitude Andean stream

Abstract

Small water bodies are critical for maintaining freshwater biodiversity, but are among the least investigated aquatic environments. We examined physical and chemical variables at two reaches in Arroyo Tambillos, a small, high-elevation Andean stream, in NW Mendoza province, Argentina, across four seasons to examine how local factors and seasonality affected the structure of the macroinvertebrate community. The Arroyo Tambillos community was numerically dominated by ephemeropterans (mainly Massartellopsis irarrazavali) while the dipteran Chironomidae were the most species rich. Total macroinvertebrate abundance was highest in summer, driven mainly by taxa that were secondary in dominance (Austrelmis sp. and Andesiops peruvianus), while richness did not differ between seasons. However, benthic composition was different in Fall 2013 (March) compared to other seasons, largely because of the increased abundance of Chironomidae. Canonical correspondence analysis discriminated Chironomidae species distributions in Fall 2013 by substrate type (i.e., big and small boulder substrate). By contrast, discharge, velocity, and depth were the variables which most affected the macroinvertebrate abundance and distributions. Contrary to our expectations, most community changes observed occurred in fall instead of summer. Nivo-kryal stream communities like the one described here have become increasingly important for conserving mountain stream biodiversity as anthropogentic impacts and climate change increasingly impact lower stream reaches. Therefore, monitoring high-altitude streams like the Arroyo Tambillos may be critical for preventing the future loss of unique and sensitive stream biota.

This is a preview of subscription content, log in to check access.

References

  1. Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. The abiotic environment. 2nd edition. Chapman and Hall Press, New York. pp. 75–102.

    Google Scholar 

  2. Alvial IE, Orth K, Durán BC, et al. (2013) Importance of geochemical factors in determining distribution patterns of aquatic invertebrates in mountain streams south of the Atacama Desert, Chile. Hydrobiology 709: 11–25. https://doi.org/10.1515/biol-2015-0008

    Article  Google Scholar 

  3. Aydin D, Tuzemen S (2010) A comparative study of the sum of squares and deviance in linear, additive and partial linear additive models. Journal of Applied Science 10: 919–929. https://doi.org/10.3923/jas.2010.919.929

    Article  Google Scholar 

  4. Beisel JN, Usseglio-Polatera P, Moreteau JC (2000) The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiology 422: 163–171. https://doi.org/10.1023/A:1017094606335

    Article  Google Scholar 

  5. Biggs J, von Fumetti S, Kelly Quinn M (2016) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiology 793: 3–39. https://doi.org/10.1007/s10750-016-3007-0

    Article  Google Scholar 

  6. Boersma K, Bogan M, Henrichs B, et al. (2013) Invertebrate assemblages of pools in arid land streams have high functional redundancy and are resistant to severe drying. Freshwater Biology 59: 491–501. https://doi.org/10.1111/fwb.12280

    Article  Google Scholar 

  7. Bogan MT, Lytle DA (2007) Seasonal flow variation allows “time-sharing” by disparate aquatic insect communities in montane desert streams. Freshwater Biology 52: 290–304. https://doi.org/10.1111/j.1365-2427.2006.01691.x

    Article  Google Scholar 

  8. Burgherr P, Ward JV (2001) Longitudinal and seasonal distribution patterns of the benthic fauna of an alpine glacial stream (Val Roseg, Swiss Alps). Freshwater Biology 46: 1705–1721.https://doi.org/10.1046/j.1365-2427.2001.00853.x

    Article  Google Scholar 

  9. Clarke KR, Gorley RN (2006) PRIMER version 6: User Manual/Tutorial. PRIMER-E, Plymouth. p 192.

    Google Scholar 

  10. Costa SS, Melo AS (2008) Beta diversity in stream macroinvertebrate assemblages: among-site and among microhabitat components. Hydrobiology 598: 131–13. {rs https://doi.org/10.1007/s10750-007-9145-7 DOI

    Article  Google Scholar 

  11. Cranston PS, Krosch M (2011) Barbadocladius Cranston & Krosch, a new genus of Orthocladiinae (Diptera: Chironomidae) from South America. Neotropical Entomology 40: 560–567. https://doi.org/10.1590/S1519-566X2011000500007

    Google Scholar 

  12. Dominguez E, Fernández HR (2009) Southamerican benthonic macroinvertebrates. Systematics and biology. Miguel Lillo Foundation, Tucumán, Argentina. p. 654 (In Spanish)

    Google Scholar 

  13. Feld CK, Hering D (2007) Community structure or function: Effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380–1399. https://doi.org/10.1111/j.1365-2427.2007.01749.x

    Article  Google Scholar 

  14. Finn DS, Poff, NL (2005) Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology 50: 243–261. https://doi.org/10.1111/j.1365-2427.2004.01320.x

    Article  Google Scholar 

  15. Füreder L (1999) High alpine streams: cold habitats for insect larvae. In: Margesin R, Schinner F (eds.), Cold-adapted organisms. Ecology, Physiology, Enzymology and Molecular Biology Springer Verlag. Berlin, Germany. pp 181–196.

    Google Scholar 

  16. Füreder L (2007) Life at the edge: habitat condition and bottom fauna of Alpine Running Waters. International Review of Hydrobiology 92(4–5): 491–513. https://doi.org/10.1002/iroh.200610987

    Article  Google Scholar 

  17. Füreder L, Wallinger M, Burger R (2005) Longitudinal and seasonal pattern of insect emergence in alpine streams. Aquatic Ecology 39: 67–78. https://doi.org/10.1002/ece3.4968

    Article  Google Scholar 

  18. Haghkerdar JM, Mc Lachlan JR, Ireland A, et al. (2019) Repeat disturbances have cumulative impacts on stream communities. Ecological Evolution 9: 2898–2906. https://doi.org/10.1002/ece3.4968

    Article  Google Scholar 

  19. Hawkins CP, Hogue JN, Decker LM, et al. (1997) Channel morphology, water temperature, and assemblage structure of stream insects. Journal of North American Benthological Society 16(4): 728–749. https://doi.org/10.2307/1468167

    Article  Google Scholar 

  20. Heino J, Louhi P, Muotka T (2004) Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshwater Biology 49: 1230–1239. https://doi.org/10.1111/j.1365-2427.2004.01259.x

    Article  Google Scholar 

  21. Jacobsen D (2004) Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology 49: 1293–1305. https://doi.org/10.1111/j.1365-2427.2004.01274.x

    Article  Google Scholar 

  22. Jacobsen D, Encalada A (1998) The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Archive für Hydrobiology 142: 53–70. https://doi.org/10.1127/archiv-hydrobiol/142/1998/53

    Article  Google Scholar 

  23. Jacobsen D, Milner AM, Brown L, et al. (2012) Biodiversity under threat in glacier-fed river systems. Natural Climatic Change 2: 361–364.https://doi.org/10.1038/nclimate1435

    Article  Google Scholar 

  24. Laursen SK, Hamerlik L, Moltesen K, et al. (2015) Diversity and composition of macroinvertebrate assemblages in high-altitude Tibetan streams. Inland Waters 5: 263–274. https://doi.org/10.5268/IW-5.3.818

    Article  Google Scholar 

  25. Maiolini B, Lencioni V (2001) Longitudinal distribution of macroinvertebrate assemblages in a glacially influenced stream system in the Italian Alps. Freshwater Biology 46: 1625–1639. https://doi.org/10.1046/j.1365-2427.2001.00849.x

    Article  Google Scholar 

  26. Meade J, Van Der Wal J, Storlie C, et al. (2018) Substantial reduction in thermo-suitable microhabitat for a rainforest marsupial under climate change. Biology Letters 14(12): 20180189. https://doi.org/10.1098/rsbl.2018.0189

    Article  Google Scholar 

  27. Mérigoux S, Dolédec S (2004) Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biology 49: 600–613. https://doi.org/10.1111/j.1365-2427.2004.01214.x

    Article  Google Scholar 

  28. Milner VS, Willby NJ, Gilvear DJ, et al. (2015) Linkages between reach-scale physical habitat and invertebrate assemblages in upland streams. Marine and Freshwater Research 66: 438–448. https://doi.org/10.1071/MF14008

    Article  Google Scholar 

  29. Milner AM (2016) The Milner and Petts (1994) conceptual model of community structure within glacier-fed rivers: 20 years on. In: Gilvear DJ et al. (eds.), River science: Research and management for the 21st Century, First Edition, Chapter 8. John Wiley and Sons, Ltd. USA-UK.

    Google Scholar 

  30. Miserendino ML, Pizzolón LA (2000) Macroinvertebrates of a fluvial system in Patagonia: altitudinal zonation and functional structure. Archive für Hydrobiology 150: 55–83. https://doi.org/10.1127/archiv-hydrobiol/150/2000/55

    Article  Google Scholar 

  31. Miserendino ML, Pizzolón LA (2003) Distribution of macroinvertebrate assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. New Zealand Journal of Marine and Freshwater Research 37: 525–539. https://doi.org/10.1080/00288330.2003.9517187

    Article  Google Scholar 

  32. Miserendino ML, Pizzolón LA (2004) Interactive effects of basin features and land use change on macroinvertebrate communities of headwater streams in the Patagonian Andes. River Research Applied 20: 967–82. https://doi.org/10.1002/rra.798

    Article  Google Scholar 

  33. Miserendino ML, Archangelsky M, Brand C, et al. (2012). Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaitén Volcano. Science Total Environment 424: 202–212. https://doi.org/10.1016/j.scitotenv.2012.02.054

    Article  Google Scholar 

  34. Nautiyal P, Mishra AS, Semwal VP (2015) Spatial Distribution of Benthic Macroinvertebrate Fauna in Mountain Streams of Uttarakhand, India. In: Rawat M, et al. (eds.), Aquatic Ecosystem: Biodiversity, Ecology and Conservation. Springer, New Delhi. pp 31–51.

    Google Scholar 

  35. Niedrist GF, Füreder L (2016) Towards a definition of environmental niches in alpine streams by employing chironomid species preferences. Hydrobiology 781: 143–160. https://doi.org/10.1007/s10750-016-2836

    Article  Google Scholar 

  36. Paggi AC (2009) Diptera Chironomidae. In: Domínguez E, Fernández HR (eds.), Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán, Argentina. pp. 383–409. (In Spanish)

    Google Scholar 

  37. Poff NL (1997) Landscape filters and species traits: Towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.https://doi.org/10.2307/1468026

    Article  Google Scholar 

  38. Poff NL, Ward JV (1989) Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805–1818. https://doi.org/10.1139/f89-228

    Article  Google Scholar 

  39. Prat N, Riradevall M, Acosta R, et al. (2011) Identification guide for larvae of Chironomidae (Diptera) of the high Andean rivers of Perú and Ecuador. Available online at: http://www.riosandes.ub.edu (Accessed August 2017) (In Spanish).

    Google Scholar 

  40. Prat N, González-Trujillo JD, Ospina-Torres R (2014) Determination key of chironomid pupal exuviae (Diptera, Chironomidae) in tropical high Andean rivers. Revista de Biologia Tropical 62: 1385–1406. (In Spanish).

    Article  Google Scholar 

  41. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: http://www.R-project.org/ (Accessed on August 2017).

    Google Scholar 

  42. Richards C, Haro RJ, Johnson LB, et al. (1997) Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biology 37: 219–230. https://doi.org/10.1046/j.1365-2427.1997.d01-540.x

    Article  Google Scholar 

  43. Robinson CT, Thompson C, Lods-Crozet B, et al. (2016) Chironomidae diversity in high elevation streams in the Swiss Alps. Fundamental and Applied Limnology 188: 201–213. https://doi.org/10.1127/fal/2016/0891

    Article  Google Scholar 

  44. Robinson CT, Burgherr B, Malard F, et al. (2003) Synthesis and perspectives. In: Ward JV, Uehlinger U (eds.), Ecology of a Glacial Flood Plain. Kluwer Academic Publishers. The Netherlands. pp 259–272.

    Google Scholar 

  45. Scheibler EE (2007) Macroinvertebrados bentónicos como indicadores de calidad del agua en la cuenca del Río Mendoza (Argentina). PhD thesis, Universidad Nacional de la Plata, Buenos Aires, Argentina. (In Spanish)

    Google Scholar 

  46. Scheibler EE, Debandi GO (2008) Spatial and temporal patterns in the aquatic insect community of a high-altitude Andean stream (Mendoza, Argentina). Aquatic Insects 30:145–161. https://doi.org/10.1080/01650420701880974

    Article  Google Scholar 

  47. Scheibler EE, Claps MC, Roig Juñent SA (2014a) Temporal and altitudinal variations in benthic macroinvertebrate assemblages in an Andean river basin of Argentina. Journal of Limnology 73: 76–92. https://doi.org/10.4081/jlimnol.2014.789

    Article  Google Scholar 

  48. Scheibler EE, Roig Juñent SA, Claps MC (2014b) Chironomid (Insecta: Diptera) assemblages along an Andean altitudinal gradient. Aquatic Biology 20: 169–184. https://doi.org/10.3354/ab00554

    Article  Google Scholar 

  49. Servicio Meteorológico Nacional (2017). Ministry of Agriculture, Livestock and Fisheries. Argentine Republic. Climatic Report. 1961–1990. Available online at: http://test.smn.gov.ar/caracterizacion-del-clima (Access on August 2017) (In Spanish)

    Google Scholar 

  50. Studholme AM, Hipo León LF, Ríos Rivera AC, et al. (2014) Altitudinal and temporal variability of four macroinvertebrate communities in Andean streams, Sangay National Park, Ecuador. Entomotrop 29: 149–158.

    Google Scholar 

  51. Trombotto D (1991) Investigations of periglacial forms and periglacial sediments at ‘Lagunita del Plata’, Mendoza, Argentinien. In Heidelberger Geographische Arbeiten. Heft 90. Germany. p 171. (In German)

    Google Scholar 

  52. Uieda VS, Iwai MLB, Ono ER, et al. (2017) How seasonality and anthropogenic impacts can modulate the structure of aquatic benthic invertebrate assemblages. Community Ecology 18: 47–55. https://doi.org/10.1556/168.2017.18.1.6

    Article  Google Scholar 

  53. Ward JV (1994) Ecology of alpine streams. Freshwater Biology 32: 277–294. https://doi.org/10.1111/j.1365-2427.1994.tb01126.x

    Article  Google Scholar 

  54. Wellnitz T, Poff NL, Cosyleon G et al. (2001) Current velocity and spatial scale as determinants of the distribution and abundance of two rheophilic herbivorous insects. Landscape Ecology 16: 111–120. https://doi.org/10.1023/A:1011114414898

    Article  Google Scholar 

  55. Woodward G, Bonada N, Brown LE, et al. (2016) The effects of climatic fluctuations and extreme events on running water ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Science 371: 20150274. https://doi.org/10.1098/rstb.2015.0274

    Article  Google Scholar 

Download references

Acknowledgements

We especially want to thank John Schoen, Zach Snobl, Chris Wojan, Ong Xiong, Jesús Gómez and Gustavo Burgos for their help and support in the field. Thanks also to the Zapata family for giving us permission to work on their property, and to Hugo Debandi and Gualberto Zalazar for their superb driving and assistance in the field. Kim Wellnitz served as “Grupo Monte” translator, photographer, and disperser of good cheer. We are especially grateful to Analia Paggi for her help in Chironomidae determination. We also thank Milagros Jefferies for help in the design of Figure 1, and Benjamin Bender for helping us formatting the figures as requested by the journal. Funding was provided by the National Science Foundation (NSF DEB-06-42512 to T.W.) and UW - Eau Claire’s Center for International Education. This study was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. The authors appreciate also the constructive comments from the editor and the anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erica E. Scheibler.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheibler, E.E., Fernández Campón, F., Lagos Silnik, S. et al. Seasonal influence and local factors affecting macroinvertebrate structure in a high-altitude Andean stream. J. Mt. Sci. 17, 1374–1386 (2020). https://doi.org/10.1007/s11629-019-5813-0

Download citation

Keywords

  • Ephemeroptera dominance
  • Chironomidae richness
  • Mountain small stream
  • Physical variables
  • Biodiversity
  • Ecosystem