Impact of natural disturbance, forest management and vegetation cover on topsoil biochemical characteristics of Tatra Mts. (Slovakia)

Abstract

Perturbations caused by windstorms usually lead to the harvesting and clearcutting of fallen trees and wood debris, especially in the areas of managed forest ecosystems. Induced shifts in soils due to management practices play a crucial role in the restoration and maintaining of key ecosystem services. This paper focuses on topsoil chemical properties in relation to vegetation type (trees, shrubs and herbs) evolving at windstorm damaged (in 2004) areas with former Norway spruce (Picea abies) forests in the Tatra Mts. region (Slovakia). We assessed the content of topsoil organic matter fractions (extractives, holocellulose (HC) and lignin (Lig)), carbon in microbial biomass (Cmic), soil organic matter (SOM) and the content of elements N, C, H and S. The study plots represent different types of post-windthrow disturbance history/regime: wooden debris extraction (EXT), wooden debris not extracted (NEX), wooden debris extraction followed by wildfire (FIR), affected by the windstorm in 2014 with the subsequent wooden debris extraction (REX) and unaffected (REF). Our results revealed significant differences among sites in the content of dichloromethane extractives (EXT vs. REX and FIR), acetone extractives (NEX vs. EXT, FIR and REF), ethanol extractives (FIR vs. EXT, NEX and REF), water extractives (FIR vs. REX, NEX) and Cmic (EXT vs. NEX, FIR and REF). The topsoil of Vaccinium myrtillus and Picea abies showed a higher ratio of C/N, N/Lig, and Lig/HC compared to Rubus idaeus, Avenella flexuosa, Calamagrostis villosa, and Larix decidua. The content of N, C, H and S varied between topsoil with shrubs (Vaccinium myrtillus, Rubus idaeus) and grasses (Avenella flexuosa, Calamagrostis villosa). A positive correlation between soil organic matter (SOM) and polar extractives (r=0.81) and a negative correlation between SOM and HC (r=−0.83) was revealed. The carbon content in microbial biomass (Cmic) is positively correlated with acid soluble lignin (ASL) (r=0.85). We also identified a strong correlation between Klason lignin (KL) and the Lig/HC ratio (r=0.97).

This is a preview of subscription content, log in to check access.

References

  1. Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany 68: 2201–2208. https://doi.org/10.1139/b90-287

    Article  Google Scholar 

  2. Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services - A global review. Geoderma 262: 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009

    Article  Google Scholar 

  3. Allen SE, Grimshaw HM, Parkinson JA, et al (1974) Chemical analysis of ecological materials. Oxford: Blackwell Scientific Publications, UK. p 565.

    Google Scholar 

  4. Ayres E, Heath J, Possell M, et al (2004) Tree physiological responses to above-ground herbivory directly modify belowground processes of soil carbon and nitrogen cycling. Ecology Letters 7: 469–479. https://doi.org/10.1111/j.1461-0248.2004.00604.x

    Article  Google Scholar 

  5. Badía-Villas D, González-Pérez JA, Aznar JM et al. (2014) Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma 213: 400–407. https://doi.org/10.1016/j.geoderma.2013.08.038

    Article  Google Scholar 

  6. Badía D, López-García S, Martí C (2017) Burn effects on soil properties associated to heat transfer under contrasting moisture content. Science of the Total Environment 601-602: 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.254

    Article  Google Scholar 

  7. Bahnmann B, Mašínová T, Halvorsen R, et al. (2018) Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biology and Biochemistry 119: 162–173. https://doi.org/10.1016/j.soilbio.2018.01.021

    Article  Google Scholar 

  8. Bengtsson J, Nilsson SG, Franc A, et al. (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management 132: 39–50. https://doi.org/10.1016/S0378-1127(00)00378-9

    Article  Google Scholar 

  9. Bennett AE, Grussu D, Kam J, et al. (2015) Plant lignin content altered by soil microbial community. New Phytologist 206: 166–174. https://doi.org/10.1111/nph.13171

    Article  Google Scholar 

  10. Bragazza L, Siffi C, Iacumin P, et al. (2007) Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology and Biochemistry 39: 257–267.https://doi.org/10.1016/j.soilbio.2006.07.014

    Article  Google Scholar 

  11. Braun-Blanquet J (1964) Phytosociology: Fundamentals of Vegetation Science. Springer-Verlag, Wien, New York. p 866. (In German) https://doi.org/10.1007/978-3-7091-8110-2

    Google Scholar 

  12. Brevik EC, Pereg L, Steffan JJ, et al (2018). Soil ecosystem services and human health. Current Opinion in Environmental Science & Health 5: 87–92. https://doi.org/10.1016/j.coesh.2018.07.003

    Article  Google Scholar 

  13. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143: 1–10. https://doi.org/10.1007/s00442-004-1788-8

    Article  Google Scholar 

  14. Dabrowska K (2009) The morphogenetic impact of the bora type wind (19th November 2004) on the relief of Danielov dom area (The High Tatras). Landform Analysis 11: 5–10.

    Google Scholar 

  15. Elena C, Tiziana D, Michele I, et al. (2007) Soil characterization and comparison of organic matter quality and quantity of two stands under different vegetation cover on Monte Faito (Campania, SItaly). Fresenius Environmental Bulletin 26: 8–18.

    Google Scholar 

  16. Faltan V, Bánovský M, Blažek M (2011) Evaluation of land cover changes after extraordinary windstorm by using the land cover metrics: a case study on the High Tatras foothill. Geografie 116: 156–171.

    Article  Google Scholar 

  17. Faško P, Štastný P (2002) Mean annual precipitation totals 1: 2,000,000. Landscape Atlas of the Slovak Republic. Banská Bystrica: Slovak Environmental Agency. pp 99.

    Google Scholar 

  18. Fleischer P, Homolová Z (2016) Tatra Mts. as the Object for longterm ecological research of natural disturbances. Životné prostredie 50: 40–43. (In Slovak)

    Google Scholar 

  19. Fleischer P, Koren M, Skvarenina J, et al (2009) Risk Assessment of the Tatra Mountains Forest. In: Strelcová K et al. (eds.), Bioclimatology and Natural Hazards 1, Part III Forest Bioclimatology, Natural Hazards and Modelling. Springer, the Netherlands. pp 145–154. https://doi.org/10.1007/978-1-4020-8876-6_13

    Google Scholar 

  20. Fleischer P, Pichler V, Fleisher Jr P, et al (2017) Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research 73: 57–71. https://doi.org/10.3354/cr01461

    Article  Google Scholar 

  21. Füssel H-M, Klein RJT (2006) Climate change vulnerability assessments: An evolution of conceptual thinking. Climatic Change 75: 301–329. https://doi.org/10.1007/s10584-006-0329-3

    Article  Google Scholar 

  22. Gáfriková J, Hanajík P, Zvarík M (2018) Determination of organic fractions and enzymatic activity in forest spruce soil of Tatra National Park. Ekológia (Bratislava) 37: 328–337. https://doi.org/10.2478/eko-2018-0024

    Article  Google Scholar 

  23. Gáfriková J, Hanajík P, Vykouková I et al. (2019) Dystric Cambisol properties at windthrow sites with secondary succession developed after 12 years under different conditions in Tatra National Park. Biologia 74: 1099–1114. https://doi.org/10.2478/s11756-019-00275-2

    Article  Google Scholar 

  24. Girona-Garcia A, Badia-Villas D, Marti C (2018) Changes in topsoil properties after centennial Scots pine afforestation in a European beech forest (NE Spain). Forests 9: 343. https://doi.org/10.3390/f9060343

    Article  Google Scholar 

  25. Girona-Garcia A, Badia-Villas D, Jiménez-Morillo NT (2019) Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS). Science of the Total Environment 691: 1155–1161. https://doi.org/10.1016/j.scitotenv.2019.07.229

    Article  Google Scholar 

  26. Goetz SJ, Bond-Lamberty B, Law BE, et al (2012) Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research 117: G02022. https://doi.org/10.1029/2011JG001733

    Article  Google Scholar 

  27. Gömöryová E, Fleischer P, Gömöry D (2014) Soil microbial community responses to windthrow disturbance in Tatra National Park (Slovakia) during the period 2006–2013. Central European Forestry Journal 60: 137–142. https://doi.org/10.2478/forj-2014-0014

    Google Scholar 

  28. Gömöryová E, Fleischer P, Pichler V, et al. (2017) Soil microorganisms at the windthrow plots: The effect of postdisturbance management and the time since disturbance. iForest - Biogeosciences and Forestry 10: 515–521. https://doi.org/10.3832/ifor2304-010

    Article  Google Scholar 

  29. Hagen-Thorn A, Callesen I, Armolaitis K, et al. (2004) The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195: 373–384. https://doi.org/10.1016/j.foreco.2004.02.036

    Article  Google Scholar 

  30. Hanajík P, Fritze H (2009) Effects of forest management on soil properties at windthrow area in Tatra National Park (TANAP). Acta Environmentalica Universitatis Comenianae (Bratislava) 17: 36–46.

    Google Scholar 

  31. Hanajík P, Šimonovicová A, Piecková E, et al. (2009) Monitoring of pedochemical and microbiological changes at the selected localities in the High Tatras after windstorm calamity Nov 2004, 19. Studies on Tatra National Park 42: 199–206. (In Slovak)

    Google Scholar 

  32. Hanajík P, Gáfriková J, Zvarík M (2017) Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park. Central European Forestry Journal 63: 91–96. https://doi.org/10.1515/forj-2017-0017

    Article  Google Scholar 

  33. Hanajík P, Zvarík M, Fritze H, et al. (2016) Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen. Ekologia Bratislava 35: 295–308. https://doi.org/10.1515/eko-2016-0024

    Article  Google Scholar 

  34. Hanajík P, Zvarík M, Fritze H (2015) Microbial PLFA, Organic Carbon Fractions and Microbial Biomass in Soils under Different Windthrow Management in Biospheric Reservation of the Tatras. In: ATINER’S Conference Paper Series. Athens, Greece. p 12.

    Google Scholar 

  35. Hartmann A, Kobler J, Kralik M, et al (2016) Model-aided quantification of dissolved carbon and nitrogen release after windthrow disturbance in an Austrian karst system. Biogeosciences 13: 159–174. https://doi.org/10.5194/bg-13-159-2016

    Article  Google Scholar 

  36. Havašová M, Ferencík J, Jakuš R (2017) Interactions between windthrow, bark beetles and forest management in the Tatra national parks. Forest Ecology and Management 391: 349–361. https://doi.org/10.1016/j.foreco.2017.01.009

    Article  Google Scholar 

  37. Hennekens SM, Schaminée JHJ (2001) Turboveg, A comprehensive data base management system for vegetation data. Journal of Vegetation science 12: 589–591. https://doi.org/10.2307/3237010

    Article  Google Scholar 

  38. Holeksa J, Jaloviar P, Kucbel S, et al. (2016) Models of disturbance driven dynamics in the West Carpathian spruce forests. Forest Ecology and Management 388: 79–89. https://doi.org/10.1016/j.foreco.2016.08.026

    Article  Google Scholar 

  39. Jagadamma S, Mayes MA, Steinweg JM, et al. (2014) Substrate quality alters the microbial mineralization of added substrate and soil organic carbon. Biogeosciences 11: 4665–4678. https://doi.org/10.5194/bg-11-4665-2014

    Article  Google Scholar 

  40. Janda P, Trotsiuk V, Mikoláš M, et al. (2016) The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. Forest Ecology and Management 388: 67–78. https://doi.org/10.1016/j.foreco.2016.08.014

    Article  Google Scholar 

  41. Jonášová M, Vávrová E, Cudlín P (2010) Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. Forest Ecology and Management 259: 1127–1134.https://doi.org/10.1016/j.foreco.2009.12.027

    Article  Google Scholar 

  42. Kooch Y, Samadzadeh B, Hosseini SM (2017) The effects of broadleaved tree species on litter quality and soil properties in a plain forest stand. Catena 150: 223–229. https://doi.org/10.1016/j.catena.2016.11.023

    Article  Google Scholar 

  43. Koren M (2005) Wind calamity in November 19, 2004 - new looks and consequences. Tatry 6: 28. (In Slovak)

    Google Scholar 

  44. Lindner M, Maroschek M, Netherer S, et al. (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698–709. https://doi.org/10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  45. Logue JB, Findlay SEG, Comte J (2015) Editorial: microbial responses to environmental changes. Frontiers in Microbiology 6: 1364.https://doi.org/10.3389/fmicb.2015.01364

    Article  Google Scholar 

  46. Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon: Nitrogen ratio and tree species composition. Ecosystems 5: 0712–0718. https://doi.org/10.1007/s10021-002-0153-1

    Article  Google Scholar 

  47. Maaroufi NI, Nordin A, Palmqvist K, et al. (2017) Nitrogen enrichment impacts on boreal litter decomposition are driven by changes in soil microbiota rather than litter quality. Scientific Reports 7: 4083.https://doi.org/10.1038/s41598-017-04523-w

    Article  Google Scholar 

  48. Makita N, Fujii S (2015) Tree species effects on microbial respiration from decomposing leaf and fine root litter. Soil Biology and Biochemistry 88: 39–47. https://doi.org/10.1016/j.soilbio.2015.05.005

    Article  Google Scholar 

  49. Micuda R, Šimonovicová A, Duriš M, et al. (2006) Pôdno ekokologická charakteristika plôch a hodnotenie ich vybraných vlastností na území Vysokých Tatier po veternej kalamite (Selected soil ecological characteristics of windthrow affected area in High Tatras). In: Fleisher P et al. (eds.), Studies on Tatra National Park 8 (41). Marmota. Tatranská Lomnica, Slovakia. pp 53–61. (In Slovak)

    Google Scholar 

  50. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626. https://doi.org/10.2307/1936780

    Article  Google Scholar 

  51. Michalová Z, Morrissey RC, Wohlgemuth T, et al. (2017) Salvagelogging after windstorm leads to structural and functional homogenization of understory layer and delayed spruce tree recovery in Tatra Mts., Slovakia. Forests 8: 88. https://doi.org/10.3390/f8030088

    Article  Google Scholar 

  52. Mina M, Bugmann H, Cordonnier T, et al. (2017) Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology 54: 389–401. https://doi.org/10.1111/1365-2664.12772

    Article  Google Scholar 

  53. Neirynck J, Mirtcheva S, Sioen G, et al. (2000) Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecology and Management 133: 275–286. https://doi.org/10.1016/S0378-1127(99)00240-6

    Article  Google Scholar 

  54. Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Frontiers of Microbiology 5: 103. https://doi.org/10.3389/fmicb.2014.00103

    Article  Google Scholar 

  55. Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research 20: 166–171. https://doi.org/10.1139/x90-023

    Article  Google Scholar 

  56. Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology 9: 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  57. Šimkovic I, Dlapa P, Šimonovicová A, et al. (2009) Water repellency of mountain forest soils in relation to impact of the Katabatic windstorm and subsequent management practices. Polish Journal of Environmental Studies 18: 443–454.

    Google Scholar 

  58. Sommerfeld A, Senf C, Buma B, et al (2018) Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications 9: 4355. https://doi.org/10.1038/s41467-018-06788-9

    Article  Google Scholar 

  59. Špoljar A, Barcic D, Volf TP, et al. (2014) Chemical properties of the forest litter in Istria and the Croatian Littoral. Ekológia (Bratislava) 33: 242–251. https://doi.org/10.2478/eko-2014-0023

    Google Scholar 

  60. Štastný P, Nieplová E, Melo M (2002) Mean annual air temperature 1:2000 000. Landscape Atlas of the Slovak Republic. Banská Bystrica: Slovak Environmental Agency. pp 98.

    Google Scholar 

  61. Svoboda M, Janda P, Nagel TA, et al (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. Journal of Vegetation Science 23: 86–97. https://doi.org/10.1111/j.1654-1103.2011.01329.x

    Article  Google Scholar 

  62. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and Lignin content as predictors of litter decay rates: A microcosm test. Ecology 70: 97–104. https://doi.org/10.2307/1938416

    Article  Google Scholar 

  63. Templeton D, Ehrman T (1995) Determination of Acid- Insoluble Lignin in Biomass, Laboratory Analytical Procedure No. 003, National Renewable Energy Laboratory, Golden, CO. 1995. Available online at: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=210463 (Accessed on 27 Jun 2019).

    Google Scholar 

  64. Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews 91: 760–781. https://doi.org/10.1111/brv.12193

    Article  Google Scholar 

  65. Trofymow JA, Moore TR, Titus B, et al (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research 32: 789–804. https://doi.org/10.1139/x01-117

    Article  Google Scholar 

  66. ÚGKK SR (2019) Orthophotomosaic of Slovak Republic (Web Map Service). https://zbgisws.skgeodesy.sk/zbgis_ortofoto_wms/servie.svc/get? (Accessed on 13 November 2019).

    Google Scholar 

  67. Vance ED, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19: 703–707.

    Article  Google Scholar 

  68. Vávrová P, Penttilä T, Laiho R (2009) Decomposition of Scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes. Forest Ecology and Management 257: 401–412. https://doi.org/10.1016/j.foreco.2008.09.017

    Article  Google Scholar 

  69. Vološcuk I, Šíbl J (2001) Lesné hospodárstvo a ochrana biodiverzity v lesných ekosystémoch. Vybrané kapitoly z náuky o lesnom prostredí, lesníctva a ochrany biodiverzity v lesoch Slovenska (Forest management and biodiversity protection of forest ecosystems. Selected chapters of forest environment, forestry and biodiversity protection of forests in Slovakia). Nitra: Slovenská polnohospodárska univerzita. p 214. (In Slovak)

    Google Scholar 

  70. Wieder RK, Starr ST (1998) Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Communications in Soil Science and Plant Analysis 29: 847–857. https://doi.org/10.1080/00103629809369990

    Article  Google Scholar 

  71. Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry 41: 910–918. https://doi.org/10.1016/j.soilbio.2008.12.028

    Article  Google Scholar 

  72. Zielonka T, Holeksa J, Fleischer P, et al. (2010) A tree-ring reconstruction of wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. Journal of Vegetation Science 21: 31–42. https://doi.org/10.1111/j.1654-1103.2009.01121.x

    Article  Google Scholar 

  73. Zielonka T, Holeksa J, Malcher P (2009) Disturbance Events in a mixed spruce–Larch forest in the Tatra Mts., Western Carpathians–a tentative reconstruction. Baltic Forestry 15: 161–167.

    Google Scholar 

Download references

Acknowledgements

This study was funded by VEGA Grant No. 1/0614/17.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jana Gáfriková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gáfriková, J., Zvarík, M., Hanajík, P. et al. Impact of natural disturbance, forest management and vegetation cover on topsoil biochemical characteristics of Tatra Mts. (Slovakia). J. Mt. Sci. 17, 1294–1309 (2020). https://doi.org/10.1007/s11629-019-5685-3

Download citation

Keywords

  • Windthrow
  • Wildfire
  • Organic matter fractions
  • Vegetation type
  • Norway spruce
  • Topsoil chemical properties