Skip to main content
Log in

Dynamic assessment of rainfall-induced shallow landslide hazard

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilistic analysis method that combines TRIGRS and the point-estimate method for evaluating the hazards of shallow landslides have been proposed under the condition of rainfall over a large area. TRIGRS provides the transient infiltration model to analyze the pore water pressure during a rainfall. The point-estimate method is used to analyze the uncertainty of the soil parameters, which is performed in the geographic information system (GIS). In this paper, we use this method to evaluate the hazards of shallow landslides in Badong County, Three Gorges Reservoir, under two different types of rainfall intensity, and the results are compared with the field investigation. The results showed that the distribution of the hazard map is consistent with the observed landslides. To some extent, the distribution of the hazard map reflects the spatial and temporal distribution of the shallow landslide caused by rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvioli M, Baum RL (2016) Parallelization of the trigrs model for rainfall-induced landslides using the message passing interface. Environmental Modelling & Software 81: 122–135. DOI: 10.1016/j.envsoft.2016.04.002

    Article  Google Scholar 

  • Baecher GB, Christian JT (2003) Reliability and statistics in geotechnical engineering. Wiley New York.

  • Baum RL (2008) TRIGRS-a FORTRAN program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0.Open-File Report.

  • Breiman L (2001) Random forests. Machine Learning 45(1): 5–32. DOI: 10.1023/A:1010933404324

    Article  Google Scholar 

  • Bui DT, Nguyen QP, Hoang ND, et al. (2016) A novel fuzzy k -nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 1–17. DOI: 10.1007/s10346-016-0708-4

    Google Scholar 

  • Caramia P, Carpinelli G, Varilone P (2010) Point estimate schemes for probabilistic three-phase load flow. Electric Power Systems Research 80(2): 168–175. DOI: 10.1016/j.epsr.2009.08.020

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T, et al. (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4): 341–411. DOI: 10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chai B, Yin KL, Du J, et al. (2013) Correlation between incompetent beds and slope deformation at Badong town in the Three Gorges reservoir, China. Environmental earth sciences 69: 209–223. DOI: 10.1007/s12665-012-1948-9

    Article  Google Scholar 

  • Chowdhury R, Flentje P, Bhattacharya G (2010) Geotechnical slope analysis. Quarterly Journal of Engineering Geology & Hydrogeology 4): 505–508. DOI: 10.1201/9780203864203

    Google Scholar 

  • Colkesen I, Sahin EK, Kavzoglu T (2016) Susceptibility mapping of shallow landslides using kernel-based gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences 118(2016): 53–64. DOI: 10.1016/j.jafrearsci.2016.02.019

    Article  Google Scholar 

  • Dietrich WE, Reiss R, Hsu M, Montgomery DR. 1995. A processbased model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes 9: 383–400. DOI: 10.1002/hyp.3360090311

  • Fell R, Corominas J, Bonnard C, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol. 102(3-4): 85–98. DOI: 10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Frattini P, Crosta GB, Fusi N, et al. (2004) Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Engineering Geology 73(3-4): 277–295. DOI: 10.1016/j.enggeo.2004.01.009

    Article  Google Scholar 

  • Godt JW, Baum RL, Savage WZ, et al. (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology 102(3-4): 214–226. DOI: 10.1016/j.enggeo.2008.03.019

    Article  Google Scholar 

  • Hoang ND, Bui DT (2015) A novel relevance vector machine classifier with cuckoo search optimization for spatial prediction of landslides. Journal of Computing in Civil Engineering, In Press(5). DOI: 10.1061/(ASCE)CP.1943-5487. 0000557

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resource Research 36(7): 1897–1910. DOI: 10.1029/2000WR900090

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2015) Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology 192: 101–112. DOI: 10.1016/j.enggeo.2015.04.004

    Article  Google Scholar 

  • King D, Bourennane H, Isambert M, et al. (1999) Relationship of the presence of a non-calcareous clay–loam horizon to dem attributes in a gently sloping area. Geoderma 89(1-2): 95–111. DOI: 10.1016/S0016-7061(98)00124-4

    Article  Google Scholar 

  • Kuriakose SL, Devkota S, Rossiter DG, et al. (2009) Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the western ghats of kerala, india. Catena 79(1): 27–38. DOI: 10.1016/j.catena.2009.05.005

    Article  Google Scholar 

  • Lee JH, Park HJ (2015) Assessment of shallow landslide susceptibility using the transient infiltration flow model and gis-based probabilistic approach. Landslides 13(5): 1–19. DOI: 10.1007/s10346-015-0646-6

    Google Scholar 

  • Liu C, Wu C (2008) Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology 55(4): 907–915. DOI: 10.1007/s00254-007-1042-x

    Article  Google Scholar 

  • Liu L, Yin KL, Wang JJ, et al. (2016a) Dynamic evaluation of regional landslide hazard due to rainfall:a case study in Wanzhou central district,Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering 35(3): 559–569 (In Chinese). DOI: 10.13722/j.cnki.jrme.2015.0495

    Google Scholar 

  • Liu L, Yin KL, Zhang J (2016b) Estimate method of the quaternary deposits thickness and its application in Wanzhou central district, Three Gorges Reservoir region. Geological Science and Technology Information 35(1): 178–180 (In Chinese). DOI: 1000-7849(2016)01-0177-07

    Google Scholar 

  • Li YF, Chi YY (2011) Rainfall induced landslide risk at Lushan, Taiwan. Engineering Geology 123(1-2): 113–121. DOI: 10.1016/j.enggeo.2011.03.006

    Article  Google Scholar 

  • Lombardo L, Bachofer F, Cama M, et al. (2016) Exploiting maximum entropy method and aster data for assessing debris flow and debris slide susceptibility for the giampilieri catchment (north -eastern sicily, italy). Earth Surface Processes & Landforms 41(12): 1776–1789. DOI: 10.1002/esp.3998

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research 30(4): 1153–1171. DOI: 10.1029/93WR 02979

    Article  Google Scholar 

  • Muntohar AS, Liao HJ (2010) Rainfall infiltration: infinite slope model for landslides triggering by rainstorm. Nat Hazards 54(3): 967–984. DOI: 10.1007/s11069-010-9518-5

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. The 8th Congress of the International Association of Engineering Geology. Vancouver 21-28.

    Google Scholar 

  • Park HJ, Lee JH, Woo I (2013) Assessment of rainfall-induced shallow landslide susceptibility using a gis-based probabilistic approach. Engineering Geology 161(14): 1–15. DOI: 10.1016/j.enggeo.2013.04.011

    Article  Google Scholar 

  • Salciarini D, Godt, JW, Savage WZ, et al. (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol., 102(3), 227–237. DOI: 10.1016/j.enggeo.2008.03.013

    Article  Google Scholar 

  • Silva F, Lambe TW, Marr WA (2008) Probability and risk of slope failure. Journal of Geotechnical and Geoenvironmental Engineering 134: 1691–1699. DOI: 10.1061/(ASCE)1090-0241(2008)134:12(1691)

    Article  Google Scholar 

  • Sorbino G, Sica C, Cascini L. (2010) Susceptibility analysis of shallow landslides source areas using physically based models. Nat Hazards 53(2): 313–332. DOI: 10.1007/s11069-009-9431-y

    Article  Google Scholar 

  • Tran TV, Lee G, An H, et al. (2017) Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of rainfall-induced shallow landslides. Environmental Earth Sciences 76(8): 315. DOI: 10.1007/s12665-017-6635-4

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env. 65: 167–184. DOI: 10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, (2000) The modelling of landslide hazards using GIS. Surv Geophys. 21(2-3): 241–255. DOI: 10.1023/A:1006794127521

    Article  Google Scholar 

  • Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with random forests: A survey and results of new tests. Pattern Recognition 44(2): 330–349. DOI: 10.1016/j.patcog.2010.08.011

    Article  Google Scholar 

  • Viet TT, Lee G, Thu TM, et al. (2016) Effect of DEM resolution on shallow landslide modeling using TRIGRS. Natural Hazards Review. DOI: 10.1061/(ASCE)NH.1527-6996.0000233

  • Wang FD (1995) Preliminarily study on features of shallow accumulation landslide and relationship between it and precipitation. Hydrogeology and Engineering Geology 1): 20–23 (In Chinese). DOI: 10.16030/j.cnki.Issn.1000-3665. 1995.01.006

    Google Scholar 

  • Xie M, Esaki T, Zhou G (2004) GIS based probabilistic mapping of landslide hazard using a three dimensional deterministic model. Natural Hazards 33(2): 265–282. DOI: 10.1023/B:NHAZ.0000037036.01850.0d

    Article  Google Scholar 

  • Xu JC, Shang YQ, Chen KF, Yang JF (2005) Analysis of shallow landslides stability under intensive rainfall. Chinese Journal of Rock Mechanics and Engineering 24(18): 3246–3251 (in Chinese). DOI: 1000-6915(2005)18-3246-0

    Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (SN: 41572292) and the follow-up work of geological disaster prevention projects in Three Gorges Reservoir supported the research in this paper (SN: 0001212015CC60005). The authors thank the reviewers for helpful comments during the peer review process

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-long Yin.

Additional information

http://orcid.org/0000-0002-0875-5665

http://orcid.org/0000-0002-3547-1633

http://orcid.org/0000-0002-6878-4724

http://orcid.org/0000-0003-2889-0925

http://orcid.org/0000-0002-9372-6761

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Yin, Kl., Liu, L. et al. Dynamic assessment of rainfall-induced shallow landslide hazard. J. Mt. Sci. 14, 1292–1302 (2017). https://doi.org/10.1007/s11629-016-4353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4353-0

Keywords

Navigation