Skip to main content
Log in

Automatic recognition of loess landforms using Random Forest method

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The automatic recognition of landforms is regarded as one of the most important procedures to classify landforms and deepen the understanding on the morphology of the earth. However, landform types are rather complex and gradual changes often occur in these landforms, thus increasing the difficulty in automatically recognizing and classifying landforms. In this study, small-scale watersheds, which are regarded as natural geomorphological elements, were extracted and selected as basic analysis and recognition units based on the data of SRTM DEM. In addition, datasets integrated with terrain derivatives (e.g., average slope gradient, and elevation range) and texture derivatives (e.g., slope gradient contrast and elevation variance) were constructed to quantify the topographical characteristics of watersheds. Finally, Random Forest (RF) method was employed to automatically select features and classify landforms based on their topographical characteristics. The proposed method was applied and validated in seven case areas in the Northern Shaanxi Loess Plateau for its complex and gradual changed landforms. Experimental results show that the highest recognition accuracy based on the selected derivations is 92.06%. During the recognition procedure, the contributions of terrain derivations were higher than that of texture derivations within selected derivative datasets. Loess terrace and loess mid-mountain obtained the highest accuracy among the seven typical loess landforms. However, the recognition precision of loess hill, loess hill–ridge, and loess sloping ridge is relatively low. The experiment also shows that watershed-based strategy could achieve better results than object-based strategy, and the method of RF could effectively extract and recognize the feature of landforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belgiu M, Drăguţ L (2016) Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry & Remote Sensing 114: 24–31. DOI: 10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  • Benediktsson JA, Swain PH, Ersoy OK (1989) Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. IEEE Transactions on Geoscience & Remote Sensing 28(4): 489–492. DOI: 10.1109/TGRS.1990.572944

    Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry & Remote Sensing 65(1): 2–16. DOI: 10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS 6.1: 12-17.

    Google Scholar 

  • Breiman L (1996) Bagging Predictors. Machine Learning 24(2): 123–140. DOI: 10.1007/BF00058655

    Google Scholar 

  • Breiman L (2001) Random Forests. Machine Learning 45(1): 5–32. DOI: 10.1023/A: 1010933404324

    Article  Google Scholar 

  • Breiman, L (2002) Manual on setting up, using, and understanding random forests v3.1. Statistics Department University of California Berkeley, CA, USA. p 1.

    Google Scholar 

  • Cao W, Tao HP, Kong B, et al. (2011) Topographic automatic recognition based on optimal topography feature space — taking southwest china as an example. Geomatics & Information Science of Wuhan University 36(11): 1376–1380. (In Chinese)

    Google Scholar 

  • Caratti JF, Nesser JA, Maynard C (2004) Watershed Classification Using Canonical Correspondence Analysis and Clustering Techniques: A Cautionary Tale. Journal of the American Water Resources Association 40(5): 1257–1268. DOI: 10.1111/j.1752-1688.2004.tb01584.x

    Article  Google Scholar 

  • Cheng WM, Zhou CH, Li B, et al. (2011) Structure and contents of layered classification system of digital geomorphology for China. Journal of Geographical Sciences 21(5): 771–790. (In Chinese) DOI: 10.11820/dlkxjz.2014.01.003

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, et al. (2007) Random forests for classification in ecology. Ecology 88(11): 2783–92. DOI: 10.1890/07-0539.1

    Article  Google Scholar 

  • Danneels G, Pirard E, Havenith HB (2007) Automatic landslide detection from remote sensing images using supervised classification methods, Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pp. 3014–3017. DOI: 10.1109/IGARSS.2007.4423479

    Google Scholar 

  • Dikau R, Brabb EE, Mark RM (1991) Landform classification of New Mexico by computer. Open-File Report.

    Google Scholar 

  • Drăguţ L, Blaschke T (2006) Automated classification of landform elements using object-based image analysis. Geomorphology 81(3–4): 330–344. DOI: 10.1016/j.geomorph. 2006.04.013

    Google Scholar 

  • Drăguţ L, Eisank C (2012) Automated object-based classification of topography from SRTM data. Geomorphology 141–142: 21–33. DOI: 10.1016/j.geomorph.2011.12.001

    Google Scholar 

  • Du P, Samat A, Waske B, Liu S, et al. (2015) Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry & Remote Sensing 105: 38–53. DOI: 10.1016/j.isprsjprs.2015.03.002

    Article  Google Scholar 

  • Elish MO, Elish KO (2009) Application of TreeNet in predicting object-oriented software maintainability: a comparative study. European Conference on Software Maintenance and Reengineering. pp 69–78. DOI: 10.1109/CSMR.2009.57

    Google Scholar 

  • Evans IS (2012) Geomorphometry and landform mapping: What is a landform? Geomorphology 137(1): 94–106. DOI: 10.1016/j.geomorph.2010.09.029

    Article  Google Scholar 

  • Freund Y (1996) Experiments with a new boosting algorithm. Thirteenth International Conference on Machine Learning. pp 148–156.

    Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, et al. (2008) Comparing landslide inventory maps. Geomorphology 94(3–4): 268–289. DOI: 10.1016/j.geomorph.2006.09.023

    Article  Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2003) Random Forests for land cover classification. Pattern Recognition Letters 27(4): 294–300. DOI: 10.1016/j.patrec.2005.08.011

    Article  Google Scholar 

  • Gooding MP (2014) A watershed classification scheme for lower Michigan. (Doctoral dissertation)

    Google Scholar 

  • Guo B, Damper RI, Gunn SR, et al. (2008) A fast separabilitybased feature-selection method for high-dimensional remotely sensed image classification. Pattern Recognition 41(5): 1653–1662. DOI: 10.1016/j.patcog.2007.11.007

    Article  Google Scholar 

  • Ham J, Chen Y, Crawford MM, et al. (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing 43(3): 492–501. DOI: 10.1109/TGRS.2004.842481

    Article  Google Scholar 

  • Hammond EH (1964) Analysis of properties in land form geography: an application to broad-scale land form mapping. Annals of the Association of American Geographers 54(54): 11–19. DOI: 10.1111/j.1467-8306.1964.tb00470.x

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6): 610–621. DOI: 10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. Springer Berlin Heidelberg. pp 321–349. DOI: 10.1007/978-3-540-69970-5_19

    Google Scholar 

  • Huang SL, Ferng JJ (1990) Applied land classification for surface water quality management: II. Land process classification. Journal of Environmental Management 31(2): 127–141. DOI: 10.1016/S0301-4797(05)80003-9

    Article  Google Scholar 

  • Ilea DE and Whelan PF (2011) Image segmentation based on the integration of colour–texture descriptors—a review. Pattern Recognition 44(10): 2479–2501. DOI: 10.1016/j.patcog.2011.03.005

    Article  Google Scholar 

  • Irvin BJ, Ventura SJ, Slater BK (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77(2–4): 137–154. DOI: 10.1016/S0016-7061(97)00019-0

    Article  Google Scholar 

  • Jasiewicz J, Stepinski TF (2013) Geomorphons- a pattern recognition approach to classification and mapping of landforms. Geomorphology 182: 147–156. DOI: 10.1016/j.geomorph.2012.11.005

    Article  Google Scholar 

  • Li F, Tang GA, Wang C, et al. (2015) Slope spectrum variation in a simulated loess watershed. Frontiers of Earth Science: 1–12. DOI: 10.1007/s11707-015-0519-2

    Google Scholar 

  • Liu K, Tang GA, Tao Y, et al. (2012) GLCM Based Quantitative Analysis of Terrain Texture from DEMs. Journal of Geo-Information Science 14(6): 751–760. (In Chinese) DOI: 10.3724/SP.J.1047.2012.00751

    Article  Google Scholar 

  • Liu K, Tang GA, Jiang S (2013) Research on the classification of terrain texture from DEMs based on BP neural network. Geomorphometry Org.

    Google Scholar 

  • Liu SL, Li FY, Jiang RQ, et al. (2015) A Method of Loess Landform Automatic Recognition Based on Slope Spectrum. Journal of Geo-Information Science 17(10). (In Chinese) DOI: 10.3724/SP.J.1047.2015.00000

    Google Scholar 

  • Lombardo L, Cama M, Conoscenti C, et al. (2015) Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards 79(3): 1621–1648. DOI: 10.1007/s11069-015-1915-3

    Article  Google Scholar 

  • Martins FMG, Fernandez HM, Isidoro JMGP, et al (2016) Classification of landforms in Southern Portugal (Ria Formosa Basin). Journal of Maps 12(3): 422–430. DOI: 10.1080/17445647.2015.1035346

    Article  Google Scholar 

  • Van Niekerk A (2010) A comparison of land unit delineation techniques for land evaluation in the Western Cape, South Africa. Land Use Policy 27(3): 937–945. DOI: 10.1016/j. landusepol.2009.12.007

    Article  Google Scholar 

  • Nikolakopoulos KG (2006) SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. International Journal of Remote Sensing 27(21): 4819–4838. DOI: 10.1080/01431160600835853

    Article  Google Scholar 

  • O'Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Computer Vision Graphics & Image Processing 28(3): 323–344. DOI: 10.1016/S0734-189X(84)80011-0

    Article  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26(1): 217–222. DOI: 10.1080/01431160412331269698

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, et al. (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 67: 93–104. DOI: 10.1016/j.isprsjprs. 2011.11.002

    Article  Google Scholar 

  • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19): 2507–2517. DOI: 10.1093/bioinformatics/btm344

    Article  Google Scholar 

  • Stepinski TF, Ghosh S, Vilata R (2006) Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification. Discovery Science 255-266. DOI: 10.1007/11893318_26

    Google Scholar 

  • Stumpf A, Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment 115(10): 2564–2577. DOI: 10.1016/j.rse.2011.05.013

    Article  Google Scholar 

  • Tang GA, Yang W, Yang X, et al. (2003) Some Key Points in Terrain Variables Deriving from DEMs. Science of Surveying and Mapping 28(1): 28–32. (In Chinese)

    Google Scholar 

  • Tang GA (2014) Progress of DEM and digital terrain analysis in China. Acta Geographica Sinica 69(9): 1305–1325. (In Chinese)

    Google Scholar 

  • Tang GA, Song XD, Li FY, et al. (2015) Slope spectrum critical area and its spatial variation in the Loess Plateau of China. Journal of Geographical Sciences 25(12): 1452–1466. DOI: 10.1007/s11442-015-1245-0

    Article  Google Scholar 

  • Timofeev R (2004) Classification and Regression Trees (CART) Theory and Applications. Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät.

    Google Scholar 

  • Ulaby FT, Kouyate F, Brisco B, et al. (1986) Textural infornation in SAR images. IEEE Transactions on Geoscience and Remote Sensing (2): 235–45. DOI: 10.1109/TGRS.1986.289643

    Article  Google Scholar 

  • Verhagen P, Drăguţ L (2012) Object-based landform delineation and classification from DEMs for archaeological predictive mapping. Journal of Archaeological Science 39(3): 698–703. DOI: 10.1016/j.jas.2011.11.001

    Article  Google Scholar 

  • Wang C, Hu P, Liu XH, et al. (2009) Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology. Geomatics & Information Science of Wuhan University 34(4): 483–487. (In Chinese) DOI: 10.13203/j.whugis2009.04.021.

    Google Scholar 

  • Xiong LY, Tang GA, Li FY, et al. (2014) Modeling the evolution of loess-covered landforms in the Loess Plateau of China using a DEM of underground bedrock surface. Geomorphology 209(3): 18–26. DOI: 10.1016/j.geomorph. 2013.12.009

    Article  Google Scholar 

  • Xu L, Li J, Brenning A (2014) A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sensing of Environment 141(141): 14–23. DOI: 10.1016/j.rse.2013.10.012

    Article  Google Scholar 

  • Zhou CH, Cheng WM, Qian JK, et al. (2009) Research on the Classification System of Digital Land Geomorphology of 1:1000000 in China. Journal of Geo-Information Science 11(6): 707–724. (In Chinese)

    Article  Google Scholar 

  • Zhu S, Tang G, Xiong L, Zhang G (2014) Uncertainty of slope length derived from digital elevation models of the Loess Plateau, China. Journal of Mountain Science 11(5): 1169–1181. DOI: 10.1007/s11629-013-2788-0

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Grant NOs. 41601411, 41571398, 41671389), the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD (Grant No. 164320H101). The authors also express their gratitude towards the journal editor and the reviewers, whose thoughtful suggestions played a significant role in improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-yang Xiong.

Additional information

http://orcid.org/0000-0002-0265-3465

http://orcid.org/0000-0001-7930-3319

http://orcid.org/0000-0002-5695-5485

http://orcid.org/0000-0002-1443-6134

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Wf., Xiong, Ly., Ding, H. et al. Automatic recognition of loess landforms using Random Forest method. J. Mt. Sci. 14, 885–897 (2017). https://doi.org/10.1007/s11629-016-4320-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4320-9

Keywords

Navigation