Journal of Mountain Science

, Volume 14, Issue 7, pp 1341–1349 | Cite as

Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea

  • Nova D. Doyog
  • Young Jin Lee
  • Sun Joo Lee
  • Jin Taek Kang
  • Sung Yong Kim


In this study, compatible taper and stem volume equations were developed for Larix kaempferi species of South Korea. The dataset was split into two groups: 80% of the data were used in model fitting and the remaining 20% were used for validation. The compatible MB76 equations were used to predict the diameter outside bark to a specific height, the height to a specific diameter and the stem volume of the species. The result of the stem volume analysis was compared with the existing stem volume model of Larix kaempferi species of South Korea which was developed by the Korea Forest Research Institute and with a simple volume model that was developed with fitting dataset in this study. The compatible model provided accurate prediction of the total stem volume when compared to the existing stem volume model and with a simple volume model. It is concluded that the compatible taper and stem volume equations are more convenient to use and therefore it is recommended to be applied in the Larix kaempferi species of South Korea.


Larix kaempferi Taper volume equation Tree stem volume equation Compatible volume Segmented model Merchantable volume estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their gratitude to the Korea Forest Service for funding this research (Project No. S211316L020130).


  1. Bi H (2000) Trigonometric variable-form taper equations for Australian Eucalyptus. Forest Science 46(3): 397–409.Google Scholar
  2. Brooks J, Jiang L, Özçelik R (2008) Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management 256(1): 147–151. DOI: 10.1016/j.foreco.2008.04.018CrossRefGoogle Scholar
  3. Brooks J, Martin S, Jordan J, and Sewell C (2002) Interim taper and cubic-foot volume equations for young Longleaf pine plantations in Southwest Georgia. In: General Technical Report SRS–48. Asheville, North Carolina: United States, Department of Agriculture, Forest Service, Southern Research Station. pp 467–470.Google Scholar
  4. Brooks J (2001) Interim volume tables for Atlantic White cedar. The Consultant Winter 46(1): 24–28.Google Scholar
  5. Burkhart H (2016) Comments on the three comparative analyses of stem taper models published in Journal of Mountain Science in 2014-2016. Journal of Mountain Science 13(3): 534–535. DOI: 10.1007/S11629-016-3842-5CrossRefGoogle Scholar
  6. Burkhart H, Tomé M (2012) Modeling forest trees and stands. Springer Science +Business Media Dordrecht. pp 33–35. DOI: 10.1007/978-90-481-3170-9_2CrossRefGoogle Scholar
  7. Coble D, Hilpp K (2006) Compatible cubic-foot stem volume and upper-stem diameter equations for semi intensive plantation grown Loblolly pine trees in East Texas. Southern Journal of Applied Forestry 30(3): 132–141.Google Scholar
  8. Clark III A, Souter R, Schlaegel B (1991) Stem profile equations for Southern tree species. USDA Forest Service Research Paper SE. p 282.CrossRefGoogle Scholar
  9. Czaplewski R, Bruce D (1990) Retransformation bias in a stem profile model. Canadian Journal of Forest Research 20(10): 1623–1630. DOI: 10.1139/x90-215CrossRefGoogle Scholar
  10. Jiang L, Brooks JR, Wang J (2005) Compatible taper and volume equations for Yellow-Poplar in West Virginia. Forest Ecology and Management 213(1): 399–409. DOI: 10.1016/j.foreco.2005.04.006CrossRefGoogle Scholar
  11. Korea Forest Research Institute (2012) Estimation of tree volume, biomass and stand yield table. Korea Forest Research Institute. Seoul, Korea. (In Korean)Google Scholar
  12. Kozak A (1988) A variable-exponent taper equation. Canadian Journal of Forest Research 18(11): 1363–1368. DOI: 10.1139/x88-213CrossRefGoogle Scholar
  13. Kozak A (2004) My last words on taper equations. The Forest Chronicle 80(4): 507–515. DOI: 10.5558/tfc80507-4CrossRefGoogle Scholar
  14. Lee W, Seo J, Son Y, et al. (2003) Modeling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management 172(1): 69–77. DOI: 10.1016/S0378-1127(02)00 139-1CrossRefGoogle Scholar
  15. Li R, Weiskittel A, Dick A, et al. (2012) Regional stem taper equations for eleven conifer species in the Acadian Region of North America: Development and Assessment. Northern Journal of Applied Forestry 29(1): 5–14. DOI: 10.5849/njaf.10-037CrossRefGoogle Scholar
  16. Lumbres R, Abino A, Pampolina N, et al. (2016) Comparison of stem taper models for the four tropical tree species in Mount Makiling, Philippines. Journal of Mountain Science 13(3): 536–545. DOI: 10.1007/s11629-015-3546-2CrossRefGoogle Scholar
  17. Martin J (1981) Taper and volume equations for selected Appalachian hardwood species. United States Department of Agriculture. Forest Service. Research paper NE-490.Google Scholar
  18. Max T, Burkhart H (1976) Segmented polynomial regression applied to taper equations. Forest Science 22(3): 283–289.Google Scholar
  19. Özçelik R, Göçeri M (2015) Compatible merchantable stem volume and taper equations for Eucalyptus plantations in the Eastern Mediterranean Region of Turkey. Turkish Journal of Agriculture and Forestry 39(6): 851–863. DOI: 10.3906/tar-1501-27CrossRefGoogle Scholar
  20. Özçelik R, Brooks J (2012) Compatible volume and taper models for economically important tree species of Turkey. Annals of Forest Science 69(1): 105–118. DOI: 10.1007/s13595-011-0137-4CrossRefGoogle Scholar
  21. Rojo A, Perales X, Sanchez-Rodriguez F, et al. (2005) Stem taper functions for Maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). European Journal of Forest Research 124(3): 177–186. DOI: 10.1007/S10342-005-0066-6CrossRefGoogle Scholar
  22. SAS Institute Inc. (2004) SAS/STAT 9.1 User’s Guide. SAS Institute Inc., Cary. NC, USA.Google Scholar
  23. Son Y, Lee K, Lee W, Kwon S (2002) Stem taper equations for six major tree species in Korea. Journal of Korean Forest Society 91(2): 213–218. (In Korean with English abstract)Google Scholar
  24. Teshome T (2005) Compatible volume-taper equations for predicting merchantable volume to variable merchantable limits for Cuppressus lusitanica, Ethiopia. Ethiopian Journal of Science 28(1): 15–22. DOI: 10.4314/sinet.v28i1.18227Google Scholar
  25. Williams M, Reich R (1997) Exploring the error structure of taper equations. Forest science 43(3): 378–386.Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nova D. Doyog
    • 1
  • Young Jin Lee
    • 1
  • Sun Joo Lee
    • 1
  • Jin Taek Kang
    • 2
  • Sung Yong Kim
    • 2
  1. 1.Department of Forest Resources, College of Industrial ScienceKongju National UniversityChungnamRepublic of Korea
  2. 2.National Institute of Forest ScienceSeoulRepublic of Korea

Personalised recommendations