Skip to main content
Log in

Lithological mapping with multispectral data – setup and application of a spectral database for rocks in the Balakot area, Northern Pakistan

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library (pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan. The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data to support the spatial delineation of outcropping rock sequences in stratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basis to further analyze the lithological spot in numerous regions in the Hindu Kush.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsanjani JJ, Helbich M, Bakillah M (2013) Exploiting volunteered geographic information to ease land use mapping of urban landscape. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W1, 29th Urban Data Management Symposium, 29-31 May, London, United Kingdom. pp 51–55.

    Google Scholar 

  • Backhaus K, Erichson B, Plinke W, et al. (2015) Multivariate analysis methods: an application-oriented introduction. Springer, Berlin, Heidelberg. p 637 (In German). DOI: 10.1007/978-3-662-46076-4

    Google Scholar 

  • Baldridge AM, Hook SJ, Grove CI, et al. (2009) The ASTER Spectral Library Version 2.0. Remote Sensing of Environment 113(4): 711–71. DOI: 10.1016/j.rse.2009.05.005

    Article  Google Scholar 

  • Beck R (2003) EO-1 User Guide. Version 2.3. University of Cincinnati. p 74. (Available online at: https://eo1.usgs.gov/documents/EO1userguidev2pt320030715UC.pdf, accessed on 9 May 2016).

    Google Scholar 

  • Boggs Th (2015) spectral 0.16.2, Spectral Python (SPy)-a Python module for hyperspectral image processing. (Available online at: http://www.spectralpython.net/, accessed on 3 April 2017)

    Google Scholar 

  • Bojinski St, Schaepman M, Schläpfer D, et al. (2003) SPECCHIO: a spectrum database for remote sensing applications. Computers and Geosciences 29(1): 27–38. DOI: 10.1016/S0098-3004(02)00107-3

    Article  Google Scholar 

  • Bossart P, Ottiger R, Heller F (1989) Paleomagnetism in the Hazara-Kashmir Syntaxis, NE Pakistan. Eclogae Geologicae Helvetiae 82(2): 585–601. DOI: 10.5169/seals-166391

    Google Scholar 

  • Bradley M (2008) Performance features of an Extended Range Beamsplitter for Mid-and Near-IR Spectroscopy. Technical Note: 51432, Thermo Fisher Scientific Inc. p 3.

    Google Scholar 

  • Calkins JA, Offield TW, Abdulla SKM, et al. (1975) Geology of the southern Himalaya in Hazara, Pakistan and Adjacent Areas. U.S. Geological Survey Professional Paper 716-C. p 29. (Available online at: https://pubs.usgs.gov/pp/0716c/report.pdf, accessed on 3 April 2017).

    Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113(5): 893–903. DOI: 10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Clark RN, Swayze GA, Wise R, et al. (2007) USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231. (Available online at: http://speclab.cr.usgs.gov/spectral.lib06, accessed on 3 April 2017)

    Google Scholar 

  • DB Browser for SQLite (2015) The Official home of the DB Browser for SQLite. (Available online at: http://sqlitebrowser. org/, accessed on 3 April 2017)

    Google Scholar 

  • Devices, Analytical Spectral (2010) FieldSpec® 3 User Manual, ASD Document 600540 Rev. I. p 98.

    Google Scholar 

  • Devices, Federal Institute for Geosciences and Natural Resources (2008) Infrared-Spectroscopy. (Available online at: http://www.bgr.bund.de/DE/Themen/GG_Mineral/Kolloidchem_Lab/Infrarotspektroskopie/infrarotspektroskopie_inhal t.html, accessed on 1 February 2016) (In German)

    Google Scholar 

  • Devices, Federal Institute for Geosciences and Natural Resources (2014a) X-ray diffraction for mineral analysis of rocks and soils (XRD). (Available online at: http://www.bgr. bund.de/DE/Themen/GG_Mineral/Kolloidchem_Lab/Roent gen_Beugungsanalyse/roentgen_beugungsanalyse_node.htm l, accessed on 3 April 2017) (In German)

    Google Scholar 

  • Devices, Federal Institute for Geosciences and Natural Resources (2014b) X-ray fluorescence spectroscopy (XRF). (Available online at: http://www.bgr.bund.de/DE/Themen/GG_Geochem_anorg/Tech_Ausstattung/Roentgenfluoresze nz_Analytik/RFA_MTD.html?nn=1553844, accessed on 3 April 2017) (In German)

    Google Scholar 

  • Devices, LECO Cooperation (2014) C230 Carbon/Sulfur Series. p2. (Available online at: http://se.leco-europe.com/wpcontent/uploads/leco_docs/product-files/CS230209-173.pdf, accessed on 15 January 2016).

    Google Scholar 

  • Exelis Visual Information Solutions (2013) ENVI manual. Boulder, Colorado: Exelis Visual Information Solutions.

    Google Scholar 

  • Finn MP, Reed MD, Yamamoto KH (2012) A Straight Forward Guide for Processing Radiance and Reflectance for EO-1 ALI, Landsat 5 TM, Landsat 7 ETM+, and ASTER. http://cegis.usgs.gov/soil_moisture/pdf/A%20Straight%20Forward%20guide%20for%20Processing%20Radiance%20and%20Reflecta nce_V_24Jul12.pdf, accessed on 15 January 2016)

    Google Scholar 

  • Gao BC (1996) NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ., 58(3): 257–266. DOI: 10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  • Geological Survey of Pakistan (2012) Landslide Susceptibility Map Kaghan and Siran Valleys (Balakot 43F/06) 1:50.000. Map Annotation Report. p 32.

    Google Scholar 

  • Geological Survey of Pakistan (2015) Landslide Susceptibility Map Mansehra and Torghar Districts, Province Khyber Pakhtunkhwa, Islamic Republic of Pakistan 1:200,000. Map Annotation Report. p 72.

    Google Scholar 

  • Henrich V, Jung A, Götze C, et al. (2009) Development of an online indices database: Motivation, concept and implementation. 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative Tool for Scientific and Commercial Environment Applications Tel Aviv, Israel, March 16-18.

    Google Scholar 

  • HEXAGON (2014) ERDAS IMAGINE Product Features and Comparisons. p 65. (Available online at: http://www.geoimage.com.au, accessed on 15 January 2016)

    Google Scholar 

  • Hunter JD (2007) Matplotlib: A 2D Graphics Environment”, Science and Engineering 9(3): 90–95. DOI: 10.1109/MCSE.2007.55

    Google Scholar 

  • Kalinowski A, Oliver S (2004) ASTER Mineral Index Processing Manual. Remote Sensing Application Report, Australian Government. p 37.

    Google Scholar 

  • Kreibich JA (2010) Using SQLite. O'Reilly Media. p 528. Geosphere, 7(1): 276–289. ISBN: 0596521189 9780596521189

    Google Scholar 

  • Masek JG, Vermote EF, Saleous N, et al. (2013) LEDAPS Calibration, Reflectance Atmospheric Correction Preprocessing Code, Version 2. Model product. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. DOI: 10.3334/ORNLDAAC/1146

    Google Scholar 

  • NASA (2016) NASA Land Processes Distributed Active Archive Center (LP DAAC) Products. Available online at: https://lpdaac.usgs.gov/, accessed on 15 January 2016)

    Google Scholar 

  • Othman AA, Gloagen R (2014) Improving Lithological Mapping by SVM Classification of Spectral and Morphological Features: The Discovery of a New Chromite Body in the Mawat Ophiolite Complex (Kurdistan, NE Iraq). Remote Sensing 6(8): 6867–6896. DOI: 10.3390/rs6086867

    Article  Google Scholar 

  • Perry JL (2009) ASTER Brightness and Ratio Codes for Minerals: Application to Lithological Mapping in the West-Central Powder river Basin, Wyoming. Reviews in Economic Geology 16: 143–168.

    Google Scholar 

  • Pour AB, Hashim M (2011) Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping. International Journal of the Physical Sciences 6(33): 7657–7668.

    Google Scholar 

  • Pournamadi M, Hashim M, Pour AB (2014) Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Advances in Space Research 54(4): 694–709. DOI: 10.1016/j.asr.2014.04.022

    Article  Google Scholar 

  • R Development Team (2012) The R-Project for Statistical Computing. (Available online at: http://www.r-project.org/, accessed on 3 April 2017)

    Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment 84(3): 350–366. DOI: 10.1016/S0034-4257(02)00127-X

    Article  Google Scholar 

  • Satpathy R, Singh VK, Parveen R, et al. (2010) Spectral Analysis of Hyperion Data for Mapping the Spatial Variation of AL+OH Minerals in a Part of Latehar and Gumla District, Jharkhand. Journal of Geographic Information System 2(4): 210–214. DOI: 10.4236/jgis.2010.24029

    Article  Google Scholar 

  • See L, Fritz ST, Perger CH, et al. (2015) Harnessing the power of volunteers, the internet and Google Earth to collect and validate spatial information using Geo-Wiki. Technical Forecasting and Social Change. DOI: 10.1016/j.techfore.2015.03.002

    Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Memoirs of the Geological Survey of Pakistan. Vol. 22. p 381.

    Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, et al. (2011) ASTER global digital elevation model version 2-summary of validation results. NASA.

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimicha Acta 28(8): 1273–1285. DOI: 10.1016/0016-7037(64)90129-2

    Article  Google Scholar 

  • Teerarungsigul S, Torizin J, Fuchs M, et al. (2016) An integrative approach for regional landslide susceptibility assessment using weight of evidence method: a case study of Yom River Basin, Phrae Province, Northern Thailand. Landslides 13(5): 1151–1165. DOI: 10.1007/s10346-015-0659-1

    Article  Google Scholar 

  • Thakur VC (1992) Geology of Western Himalaya. Pergamon, Oxford. p 355.

    Google Scholar 

  • Van Rossum G, Drake FL (2012) The Python Language Reference. Python Software Foundation. (Available online at: http://docs.python.org/py3k/reference/index.html, accessed on 10 December 2015)

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards 30(3): 399–419. DOI: 10.1023/B: NHAZ.0000007097.42735.9e

    Article  Google Scholar 

Download references

Acknowledgement

The German-Pakistani technical cooperation project “Geohazard Assessment in Northern Pakistan” provided the framework for our additional remote sensing based work, which is presented here. We thank the project leader Ms. Annette Lisy and the technical adviser Mr. Daniel Weggenmann for their support.

The samples were prepared in the laboratories of the Geological Survey of Pakistan and analyzed in the Federal Institute for Geosciences and Natural Resources.

We thank the laboratory staff for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fuchs.

Additional information

http://orcid.org/0000-0003-2269-9724

http://orcid.org/0000-0002-2913-9095

http://orcid.org/0000-0003-2282-2032

http://orcid.org/0000-0003-3424-8883

http://orcid.org/0000-0001-9260-6031

http://orcid.org/0000-0001-9863-9379

http://orcid.org/0000-0001-8297-819X

The current version of the pklib will be available on request by emailing the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, M., Awan, A.A., Akhtar, S.S. et al. Lithological mapping with multispectral data – setup and application of a spectral database for rocks in the Balakot area, Northern Pakistan. J. Mt. Sci. 14, 948–963 (2017). https://doi.org/10.1007/s11629-016-4101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4101-5

Keywords

Navigation