Skip to main content
Log in

On the criteria to create a susceptibility map to debris flow at a regional scale using Flow-R

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

An Erratum to this article was published on 05 May 2017

Abstract

Studies on susceptibility to debris flows at regional scale (100-1000 km2) are important for the protection and management of mountain areas. To reach this objective, routing models, mainly based on land topography, can be used to predict susceptible areas rapidly while necessitating few input data. In this research, Flow-R model is implemented to create the susceptibility map for the debris flow of the Vizze Valley (BZ, North-Eastern Italy; 134 km2). The analysis considers the model application at local scale for three sub-catchments and then it explores the model upscaling at the regional scale by verifying two methods to generate the source areas of debris-flow initiation. Using data of an extreme event occurred in the Vizze Valley (4 August 2012) and historical information, the modeling verification highlights that the propagation parameters are relatively simple to set in order to obtain correct runout distances. A double DTM filtering - using a threshold for the upslope contributing area (0.1 km2) and a threshold for the terrain-slope angle (15°) - provides a satisfactory prediction of source areas and susceptibility map within the geological conditions of the Vizze Valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astori A, Venturini C (2011) Evoluzione quaternaria della media Val di Vizze -Pfitschtal (Vipiteno, BZ -Alpi Aurine). Gortania Geologia Paleontologia Paletnologia 33 (1): 63–92 (Quaternary evolution of the middle Val di Vizze -Pfitschtal). (In Italian)

    Google Scholar 

  • Bathurst JC, Burton A, Ward TJ (1997) Debris Flow Run-Out and Landslide Sediment Delivery Model Tests. Journal of Hydraulic Engineering 123 (5): 410–419. DOI: 10.1061/(ASCE)0733-9429(1997)123:5(410)

    Article  Google Scholar 

  • Baumann V, Wick E, Horton P, et al. (2011) Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In: Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. 2-6 October 2011 Toronto, Ontario, Canada.

    Google Scholar 

  • Bettella F, Bertoldi G, Ferrato C, et al. (2012) Modellazioni bidimensionali comparate sulla propagazione di debris flow: analisi di performance su alcuni eventi reali. Quaderni di idronomia montana 30: 437–447 (Comparative 2D debrisflow modeling: performance analysis on real events). (In Italian)

    Google Scholar 

  • Blahut J, Horton P, Sterlacchini S, et al. (2010) Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards and Earth System Sciences 10 (11): 2379–2390. DOI: 10.5194/nhess-10-2379-2010

    Article  Google Scholar 

  • Carrara A, Crosta G, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94 (3): 353–378. DOI: 10.1016/j.geomorph. 2006.10.033

    Article  Google Scholar 

  • Cavalli M, Grisotto S (2006) Individuazione con metodi GIS delle aste torrentizie soggette a colate detritiche: applicazione al bacino dell’Alto Avisio (Trento). Quaderni di idronomia montana 26: 1–12 (Gis-based identification of debris flow dominated channels: application to the upper Avisio basin (Trento)). (In Italian)

    Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl JM, et al. (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms 30 (4): 461–477. DOI: 10.1002/esp.1155

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences 3 (1/2): 81–93. DOI: 10.5194/nhess-3-81-2003

    Article  Google Scholar 

  • D’Agostino V (2013) Assessment of Past Torrential Events Through Historical Sources. In: Schneuwly-Bollschweiler, M, Stoffel M, Rudolf-Miklow F (eds.), Dating Torrential Processes on Fans and Cones in Advances on Global Change Research 47: 131–146. DOI: 10.1007/978-94-007-4336-6

    Article  Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flow and their toll of human life: a global analysis of debris flow fatalities from 1950 to 2011. Natural Hazards 71 (1): 203. DOI: 10.1007/s11069-013-0907-4

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Canadian Geotechnical. Journal 38 (5): 982–994. DOI: 10.1139/cgj-38-5-982

    Article  Google Scholar 

  • Fischer L, Rubensdotter L, Sletten K, et al. (2012) Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In: Eberhardt et al. (eds.), Landslides and Engineered Slopes: Protecting Society through Improved Understanding. Taylor & Francis Group, London, UK, pp. 723–729.

    Google Scholar 

  • Fuchs S, Kaitna R, Scheidl C, et al. (2008) The Application of the Risk Concept to Debris Flow Hazards. Geomechanics and Tunnelling 1 (2): 120–129. DOI: 10.1002/geot.200800013

    Article  Google Scholar 

  • Gamma P (2000) Dfwalk -Ein Murgang Simulationsprogramm zur Gefahrenzonierung, Rapport final. Geographisches Institut der Universitat, Bern, Switzerland. pp 158 (A debris flow simulation program for hazard zonation). (In German)

    Google Scholar 

  • Ghilardi P, Natale L, Savi F (2001) Modelling Debris Flow Propagation and Deposition. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science 26 (9): 651–656. DOI: 10.1016/S1464-1917(01)00063-0

    Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Vierteljhareszeitschrift der Naturforschenden Gesellschaft, Zurich, Switzerland (Rockfall and human life). (In German)

    Google Scholar 

  • Heinimann H (1998) Methoden zur Analyse und Bewertung von Naturgefahren. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Vol. 85, Bern, Switzerland, pp. 247 (Methods for the analysis and assessment of natural hazards). (In German)

    Google Scholar 

  • Holmgren P (1994) Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes 8 (4): 327–334. DOI: 10.1002/hyp.3360080405

    Article  Google Scholar 

  • Horton P, Jaboyedoff M, Bardou E (2008) Debris flow susceptibility mapping at a regional scale. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds.), 4th Canadian Conference on Geohazards: From Causes to Management. Presse de l’Université Laval, Québec, Canada, pp 399–406.

    Google Scholar 

  • Horton P, Jaboyedoff M, Rudaz B, et,al. (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences 13 (4): 869–885. DOI: 10.5194/nhess-13-869-2013

    Article  Google Scholar 

  • Horton P, Jaboyedoff M, Zimmermann M, et al. (2011) Flow-R, a model for debris flow susceptibility mapping at a regional scale -some case studies. In: Casa Editrice Università La Sapienza (eds.), Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment -Italian Journal of Engineering Geology and Environment. Padova, Italy, pp. 875–884. DOI: 10.4408/IJEGE.2011-03.B-095

    Google Scholar 

  • Huggel C, Kaab A, Haeberli W, et al. (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal 39 (2): 316–330. DOI: 10.1139/t01-099

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2013) The Varnes classification of landslide types, an update. Landslides 11 (2): 167–194. DOI: 10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology 78 (3): 359–372. DOI:10.1016/j.geomorph. 2006.02.003

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Mechanics of debris flows and debris-laden flash floods. In: USGS Research (eds.), Seventh Federal Interagency Sedimentation Conference. 25-29 March 2001, Reno, Nevada, USA, pp. 1–8

    Google Scholar 

  • Kappes MS, Malet JP, Remaître A, et al. (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Sciences 11 (2): 627–641. DOI: 10.5194/nhess-11-627-2011

    Article  Google Scholar 

  • Lari S, Crosta GB, Frattini P, et al. (2011) Regional-scale debris flow risk assessment for an alpine valley. In: Casa Editrice Università La Sapienza (eds.), Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment -Italian Journal of Engineering Geology and Environment. Padova, Italy, pp. 933–940. DOI: 10.4408/IJEGE.2011-03.B-101

    Google Scholar 

  • Macconi P, Formaggioni O, Sperling M (2012) Report Annuale ED30 2012. Bolzano, Italy. (Annual Report of ED30). (In Italian)

    Google Scholar 

  • Michelini T, Pastorello R, D’Agostino V (2014) Modellazione morfo-energetica delle colate detritiche per la definizione della suscettibilità al pericolo. In: Zaccaria Editore (eds.) XXXIV Convegno Di Idraulica E Costruzioni Idrauliche. Vol. 2: 8-10, pp. 701–702 (Morpho-energetic simulation of debris flows for the definition of hazard susceptibility). (In Italian)

    Google Scholar 

  • Michelini T, D’Agostino V (2015) Confronto tra un modello semi-empirico e un modello fisicamente basato per la simulazione delle aree colpite da colate detritiche. Quaderni di idronomia Montana 32/1: 287–296 (Comparison between a semi-empiric model and a physical model for the identification of areas affected by debris flows). (In Italian)

    Google Scholar 

  • Michoud C, Derron MH, Horton P, et al. (2012) Rockfall hazard and risk assessments along roads at a regional scale: Example in Swiss Alps. Natural Hazards and Earth System Sciences 12 (3): 615–629. DOI:10.5194/nhess-12-615-2012

    Article  Google Scholar 

  • Miller DJ, Burnett KM (2008) A probabilistic model of debrisflow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA. Geomorphology 94 (1): 184–205. DOI: 10.1016/j.geomorph.2007.05.009

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research 30 (4): 1153–1171. DOI: 10.1029/93WR 02979

    Article  Google Scholar 

  • Montgomery DR, Foufoula-Georgiou E (1993) Channel network source representation using digital elevation models. Water Resouces Research 39 (12): 3925–3934. DOI: 10.1029/93WR 02463

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-Dimensional water flood and mudflow simulation. Journal of Hydraulic. Engineering 119 (2): 244–261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 27 (3): 247. DOI: 10.1016/S0734-189X(84)80047-X

    Article  Google Scholar 

  • Park D, Lee S, Nikhil NV, et al. (2013) Debris flow hazard zonation by probabilistic analysis (Mt. Woomyeon, Seoul, Korea). International Journal of Innovative Research in Science, Engineering and Technology 2 (6): 2381–2390.

    Google Scholar 

  • Perla R, Cheng TT, McClung DM (1980) A two-parameter model of snow-avalanche motion. Journal of Glaciology 26 (94): 197–207. DOI: 10.1017/S002214300001073X

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5 (1): 59–79. DOI: 10.1002/hyp.3360050106

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical Relationships for Debris Flows. Natural hazards 19 (9): 47–77. DOI: 10.1023/A:10080642 20727

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, et al. (2006) Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10 (2): 241–264. DOI: 10.1007/s10596-005-9021-3

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8 (2): 175–189. DOI: 10.1016/0169-555X(93)90036-2

    Article  Google Scholar 

  • Santos R, Menéndez Duarte R (2006) Topographic signature of debris flow dominated channels: implications for hazard assessment. WIT Transactions on Ecology and the Environment 90: 301–310. DOI: 10.2495/DEB060291

    Article  Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debrisflow mobility and deposition on fans. Earth Surface Processes and Landforms 35 (2): 157–173. DOI: 10.1002/esp.1897

    Google Scholar 

  • Suk P, Klimánek M (2011) Creation of the snow avalanche susceptibility map of the Krkonoše mountains using GIS. Acta Universitatis Agricolturae et. Silvicolturae Mendelianae Brunensis 59 (5): 237–246. DOI: 10.11118/actaun2011 59050237

    Article  Google Scholar 

  • Takahashi T (1981) Estimation of potential debris flows and their hazardous zones; soft countermeasures for a disaster. Journal of Natural Disaster Science 3 (1): 57–89

    Google Scholar 

  • Takahashi T (2007) Debris flow Mechanics, Prediction and Countermeasures. Taylor & Francis/Balkema, Leiden, Netherlands, pp 447.

    Book  Google Scholar 

  • Vanzetta A (1987) Relazione tecnica riguardante i lavori di sistemazione idraulico-forestale da eseguirsi nei rivi Riva e Avenes, affluenti del torrente Vizze in comune di Prati di Vizze. Bolzano, Italy (Technical report on the hydraulic control structures built on Rio Riva and Rio Avenes(BZ)). (In Italian)

    Google Scholar 

  • Zimmermann M, Mani P, (1997) Murganggefahr und Klimaänderung -ein GIS-basierter Ansatz. Schlussbericht Hochschulverlag and der ETH, Zurich, Switzerland (Debris flow Hazard and Climate Change -a GIS-based approach). (In German)

    Google Scholar 

Download references

Acknowledgments

The research was granted by the Junior Research Grant Università degli Studi di Padova, year 2013, prot. CPDR138494 (“Criticità idrauliche nel reticolo montano nei riguardi del movimento di detrito legnoso e di colate detritiche”; Prof. Vincenzo D’Agostino).

We thank the office of “Ripartizione Opere Idrauliche” of the Autonomous Province of Bozen, which furnished data about the debris flow event of 4/08/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pastorello.

Additional information

http://orcid.org/0000-0002-4159-2423

http://orcid.org/0000-0003-1011-0409

http://orcid.org/0000-0003-2261-9069

An erratum to this article is available at http://dx.doi.org/10.1007/s11629-017-4389-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastorello, R., Michelini, T. & D’Agostino, V. On the criteria to create a susceptibility map to debris flow at a regional scale using Flow-R. J. Mt. Sci. 14, 621–635 (2017). https://doi.org/10.1007/s11629-016-4077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4077-1

Keywords

Navigation