Advertisement

Journal of Mountain Science

, Volume 14, Issue 5, pp 859–869 | Cite as

Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry

  • Guang Liu
  • Jing-hui Fan
  • Feng Zhao
  • Ke-biao Mao
Article

Abstract

Glaciers play an important role in the climate system. The elevation change of a glacier is an important parameter in studies of glacier dynamics. Only a few ground-based measurements of high mountain glaciers are available due to their remoteness, high elevation, and complex topography. The acquisition from the German TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) SAR imaging configuration provides a reliable data sources for studying the elevation change of glaciers. In this study, the bistatic TanDEM-X data that cover the Geladandong Mountain on the Tibetan Plateau were processed with SAR interferometry technique and the elevation changes of the mountain’s glaciers during 2000–2014 were obtained. The results indicated that although distinct positive and negative elevation changes were found for different glacier tongues, the mean elevation change was about -0.14±0.26 m a-1. Geoscience Laser Altimeter System (GLAS) data were obtained for comparison and verification. The investigation using GLAS data demonstrated the efficacy of the proposed method in determining glacier elevation change. Thus, the presented approach is appropriate for monitoring glacier elevation change and it constitutes a valuable tool for studies of glacier dynamics.

Keywords

Elevation change Glacier Synthetic aperture radar interferometry TanDEM-X Geladandong mountain Tibetan Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the National Science Foundation of China (41590852, 41001264), the International Science & Technology Cooperation Program of China (2010DFB23380), International Partnership Program of Chinese Academy of Sciences (131C11KYSB20160061). The TanDEM-X data are supported by the DLR AO project (GEOL0447). The SRTM DEM and Landsat images has been downloaded free of charge from http://glovis.usgs.gov, ICESat GLAS data were obtained from NASA NSIDC. We greatly appreciate the anonymous reviewers for their constructive comments. We thank Executive Editor-in-Chief QIU Dun-lian for comments and helping improve the manuscript.

References

  1. Alsdorf DE, Smith LC (1999) Interferometric SAR observations of ice topography and velocity changes related to the 1996, Gjalp subglacial eruption, Iceland. International Journal of Remote Sensing 20(15–16): 3031–3050. DOI: 10.1080/014311699211606CrossRefGoogle Scholar
  2. Arendt AA, Echelmeyer KA, Harrison WD, et al. (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science (New York, N.Y.) 297(5580): 382–386. DOI: 10.1126/science.1072497CrossRefGoogle Scholar
  3. Baran I, Stewart MP, Kampes BM, et al. (2003) A modification to the Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote Sensing 41(9): 2114–2118. DOI: 10.1109/TGRS.2003.817212CrossRefGoogle Scholar
  4. Berthier E, Arnaud Y, Vincent C, et al. (2006) Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophysical Research Letters 33(8): L08502. DOI: 10.1029/2006GL025862CrossRefGoogle Scholar
  5. Bevan SL, Luckman A, Khan SA, et al. (2015) Seasonal dynamic thinning at Helheim Glacier. Earth and Planetary Science Letters 415: 47–53. DOI: 10.1016/j.epsl.2015.01.031CrossRefGoogle Scholar
  6. Bliss A, Hock R, Cogley JG (2013) A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Annals of Glaciology 54(63): 191–199. DOI: 10.3189/2013AoG63A377CrossRefGoogle Scholar
  7. Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. The Cryosphere 5(2): 349–358. DOI: 10.5194/tc-5-349-2011CrossRefGoogle Scholar
  8. Chen CW, Zebker HA (2000) Network approaches to twodimensional phase unwrapping: intractability and two new algorithms. Journal of the Optical Society of America A 17(3): 401–414. DOI: 10.1364/JOSAA.17.00 0401CrossRefGoogle Scholar
  9. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology 50(50): 96–100. DOI: 10.3189/172756409787769 744CrossRefGoogle Scholar
  10. Cox LH, March RS (2004) Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. Journal of Glaciology 50(170): 363–370. DOI: 10.3189/172756504781829855CrossRefGoogle Scholar
  11. Dietrich R, Rülke A, Scheinert M (2005) Present-day vertical crustal deformations in West Greenland from repeated GPS observations. Geophysical Journal International 163(3): 865–874. DOI: 10.1111/j.1365-246X.2005.02766.xCrossRefGoogle Scholar
  12. Francou B, Ribstein P, Saravia R, et al. (1995) Monthly balance and water discharge of an inter-tropical glacier: Zongo Glacier, Cordillera Real, Bolivia, 16oS. Journal of Glaciology 41(137): 61–67. DOI: 10.1017/S0022143000017767CrossRefGoogle Scholar
  13. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research 94(B7): 9183–9191. DOI: 10.1029/JB094iB07p09183CrossRefGoogle Scholar
  14. Gardelle J, Berthier E, Arnaud Y (2012) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology 58(208): 419–422. DOI: 10.3189/2012JoG11J175CrossRefGoogle Scholar
  15. Gardelle J, Berthier E, Arnaud Y, et al. (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. Cryosphere 7(6): 1263–1286. DOI: 10.5194/tc-7-1263-2013CrossRefGoogle Scholar
  16. Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dynamics 41(11–12): 3283–3300. DOI: 10.1007/s00382-013-1743-7CrossRefGoogle Scholar
  17. Goldstein RM, Engelhardt H, Kamp B, et al. (1993) Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 262: 1525–1530. DOI: 10.1126/science.262.5139.1525CrossRefGoogle Scholar
  18. Gorokhovich Y, Voustianiouk A (2006) Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment 104(4): 409–415. DOI: 10.1016/j.rse.2006.05.012CrossRefGoogle Scholar
  19. Guo W, Xu J, Liu SY, et al. (2014) The Second Glacier Inventory Dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou. DOI: 10.3972/glacier.001.2013.dbGoogle Scholar
  20. Hajnsek I, Krieger G, Papathanassiou K, et al. (2010) TanDEMX: First Scientific Experiments during the Commissioning Phase. Proceedings of EUSAR 2010, 8th European Conference on Synthetic Aperture Radar. Aachen, Germany, Germany. pp 1–3.Google Scholar
  21. Hanssen RF (2001) Radar Interferometry: Data Interpretation and Error Analysis, 2nd edn. Springer Verlag, Dordrecht. 308 Pages DOI: 10.1007/0-306-47633-9CrossRefGoogle Scholar
  22. Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing 64(4): 398–406. DOI: 10.1016/j.isprsjprs.2009.02.003CrossRefGoogle Scholar
  23. Holmlund P, Jansson P, Pettersson R (2005) A re-analysis of the 58 year mass-balance record of Storglaciären, Sweden. Annals of Glaciology 42(1): 389–394. DOI: 10.3189/17275640 5781812547CrossRefGoogle Scholar
  24. Jomelli V, Khodri M, Favier V, et al. (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474(7350): 196–9. DOI: 10.1038/nature1 0150CrossRefGoogle Scholar
  25. Joughin I, Kwok R, Fahnestock M (1996a) Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. Journal of Glaciology 42(142): 564–575. DOI: 10.1017/S0022143000003543CrossRefGoogle Scholar
  26. Joughin I, WineBrenner DP, Fahnestock M, et al. (1996b) Measurement of ice-sheet topography using satellite-radar interferometry. Journal of Glaciology 42(140): 10–22. DOI: 10.1017/S0022143000030483CrossRefGoogle Scholar
  27. Kääb A, Berthier E, Nuth C, et al. (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412): 495–8. DOI: 10.1038/nature 11324CrossRefGoogle Scholar
  28. Kääb A, Treichler D, Nuth C, et al. (2015) Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 9(2): 557–564. DOI: 10.5194/tc-9-557-2015CrossRefGoogle Scholar
  29. Kampes BM, Hanssen RF, Perski Z (2003) Radar Interferometry with Public Domain Tools. Third International Workshop on ERS SAR Interferometry, `FRINGE03’, Frascati, Italy, 1-5 Dec 2003.Google Scholar
  30. Kaplan MR, Schaefer JM, Denton GH, et al. (2010) Glacier retreat in New Zealand during the Younger Dryas stadial. Nature 467(7312): 194–197. DOI: 10.1038/nature09313CrossRefGoogle Scholar
  31. Khan SA, Liu L, Wahr J, et al. (2010a) GPS measurements of crustal uplift near Jakobshavn Isbræ due to glacial ice mass loss. Journal of Geophysical Research 115(B9): B09405. DOI: 10.1029/2010JB007490CrossRefGoogle Scholar
  32. Khan SA, Wahr J, Bevis M, et al. (2010b) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophysical Research Letters 37(6): L06501. DOI: 10.1029/2010GL042460CrossRefGoogle Scholar
  33. Kolecka N, Kozak J (2013) Assessment of the Accuracy of SRTM C-and X-Band High Mountain Elevation Data: a Case Study of the Polish Tatra Mountains. Pure and Applied Geophysics 171(6): 897–912. DOI: 10.1007/s00024-013-0695-5CrossRefGoogle Scholar
  34. Krabill W, Waleed A, Frederick E, et al. (2000) Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning. Science 289(5478): 428–430. DOI: 10.1126/science.289.5478. 428CrossRefGoogle Scholar
  35. Krieger G, Fiedler H, Hajnsek I, et al. (2005) TanDEM-X: mission concept and performance analysis. 2005 IEEE International Geoscience and Remote Sensing Symposium 4890-4893. DOI: 10.1109/IGARSS.2005.1526770Google Scholar
  36. Kropatsch WG, Strobl D (1990) The generation of SAR layover and shadow maps from digital elevation models. IEEE Transactions on Geoscience and Remote Sensing 28(1): 98–107. DOI: 10.1109/36.45752CrossRefGoogle Scholar
  37. Kumar P, Kotlarski S, Moseley C, et al. (2015) Response of Karakoram-Himalayan glaciers to climate variability and climatic change: A regional climate model assessment. Geophysical Research Letters 42(6): 1818–1825. DOI: 10.1002/2015GL063392CrossRefGoogle Scholar
  38. Kwok R, Fahnestock MA (1996) Ice sheet motion and topography from radar interferometry. IEEE Transactions on Geoscience and Remote Sensing 34(1): 189–200. DOI: 10.1109/36.481903CrossRefGoogle Scholar
  39. Lemoine FG, Kenyon SC, Factor JK, et al. (1998) The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861, July 1998Google Scholar
  40. Liu G, Guo H, Yue H, et al. (2015) Modified four-pass differential SAR interferometry for estimating mountain glacier surface velocity fields. Remote Sensing Letters 7(1): 1–10. DOI: 10.1080/2150704X.2015.1094588CrossRefGoogle Scholar
  41. Lu AX, Yao TD, Liu S, et al. (2002) Glacier Change in the Geladandong Area of the Tibetan Plateau Monitored by Remote Sensing. Journal of Glaciology and Geocryology 24(5): 559–562. (In Chinese). DOI: 10.3969/j.issn.1000-0240.2002.05.014Google Scholar
  42. Ludwig R, Schneider P (2006) Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing 60(5): 339–358. DOI: 10.1016/j.isprsjprs.2006.05.003CrossRefGoogle Scholar
  43. Mihalcea C, Mayer C, Diolaiuti G, et al. (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology 43(1): 292–300. DOI: 10.3189/172756406781812104CrossRefGoogle Scholar
  44. Millan R, Dehecq A, Trouve E, et al. (2015) Elevation changes and X-band ice and snow penetration inferred from TanDEMX data of the Mont-Blanc area. 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp). IEEE 1-4. DOI: 10.1109/Multi-Temp. 2015. 7245753Google Scholar
  45. Mohr JJ, Reeh N, Madsen SN (1998) Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 291: 273–276. DOI: 10.1038/34635Google Scholar
  46. Nakagawa H, Murakami M, Fujiwara S, et al. (2000) Land subsidence of the northern Kanto plains caused by ground water extraction detected by JERS-1 SAR interferometry. 2000 IEEE International Geoscience and Remote Sensing Symposium, 2233–2235. DOI: 10.1109/IGARSS.2000.858366Google Scholar
  47. National Imagery and Mapping Agency (1997) NIMA Technical Report TR8350.2, Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems.Google Scholar
  48. Neckel N, Braun A, Kropáček J, et al. (2013) Recent mass balance of Purogangri ice cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. The Cryosphere Discussions 7(2): 1119–1139. DOI: 10.5194/tcd-7-1119-2013CrossRefGoogle Scholar
  49. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5(1): 271–290. DOI: 10.5194/tc-5-271-2011CrossRefGoogle Scholar
  50. Oerlemans J (1989) Glaciers and Climate Change. Springer, Netherlands. DOI: 10.1007/978-94-015-7823-3Google Scholar
  51. Osmanoglu B, Navarro FJ, Hock R, et al. (2014) Surface velocity and mass balance of Livingston Island ice cap, Antarctica. The Cryosphere 8(5): 1807–1823. DOI: 10.5194/tc-8-1807-2014CrossRefGoogle Scholar
  52. Rankl M, Braun MH (2016) Glacier elevation and mass changes over the central Karakoram region estimated from TanDEMX and SRTM/X-SAR digital elevation models. Annals of Glaciology 51(71): 273–281. DOI: 10.3189/2016AoG71A024CrossRefGoogle Scholar
  53. Rignot E, Thomas RH (2002) Mass Balance of Polar Ice Sheets. Science 297: 1502–1506. DOI: 10.1126/science.1073888CrossRefGoogle Scholar
  54. Rolstad C, Haug T, Denby B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. Journal of Glaciology 55(192): 666–680. DOI: 10.3189/002214309789470950CrossRefGoogle Scholar
  55. Sapiano JJ, Harrison WD, Echelmeyer KA (1998) Elevation, volume and terminus changes of nine glaciers in North America. Journal of Glaciology 44(146): 119–135. DOI: 10.1017/S0022143000002410CrossRefGoogle Scholar
  56. Shengyi G, Qingsong F, Xi C, et al. (2014) Glacial Fluctuation in the Source Region of the Yangtze River. IOP Conference Series: Earth and Environmental Science 17(1): 12135. DOI: 10.1088/1755-1315/17/1/012135CrossRefGoogle Scholar
  57. Shi Y (2008) Concise Glacier Inventory of China. Shanghai Popular Science Press, China. ISBN-13: 9787542731173Google Scholar
  58. Shugar DH, Rabus BT, et al. (2010) Elevation changes (1949-1995) of Black Rapids Glacier, Alaska, derived from a multibaseline InSAR DEM and historical maps. Journal of Glaciology 56(198): 625–634. DOI: 10.3189/00221431079314 6278CrossRefGoogle Scholar
  59. Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology 174: 103–138. DOI: 10.1016/j.enggeo.2014.03.003CrossRefGoogle Scholar
  60. Yan S, Liu G, Wang Y, et al. (2015) Glacier surface motion pattern in the Eastern part of West Kunlun Shan estimation using pixel-tracking with PALSAR imagery. Environmental Earth Sciences 74(3): 1871–1881. DOI: 10.1007/s12665-015-4645-7CrossRefGoogle Scholar
  61. Ye Q, Kang S, Chen F, et al. (2006) Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies. Journal of Glaciology 52(179): 537–545. DOI: 10.3189/172756506 781828359CrossRefGoogle Scholar
  62. Zhang L, Tang Y, Yang X (2014) Overall and local changing patterns of main glaciers and their responses to climate change in Geladandong area of Yangtze Headwater region during 1969-2012. Arid Land Geography 37(2): 203–213. (In Chinese). DOI: 10.13826/j.cnki.cn65-1103/x.2014.02.011Google Scholar
  63. Zwally HJ, Jun L, Brenner AC, et al. (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002. Journal of Glaciology 57(201): 88–102. DOI: 10.3189/002214311795306682CrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guang Liu
    • 1
  • Jing-hui Fan
    • 2
  • Feng Zhao
    • 3
  • Ke-biao Mao
    • 4
  1. 1.Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina
  2. 2.China Aero Geophysical Survey & Remote Sensing Center for Land and ResourcesBeijingChina
  3. 3.School of Instrumentation Science and Opto-electronics EngineeringBeihang UniversityBeijingChina
  4. 4.Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations