Skip to main content
Log in

Long term evaluation of green vegetation cover dynamic in the Atacora Mountain chain (Togo) and its relation to carbon sequestration in West Africa

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The research was done in the Atacora Mountain chain in Togo which tended to assess the change of vegetation cover during a 24-year period. It also aims to evaluate the dynamic of the net primary productivity (NPP) of the living plants over the same period. The Landsat imagery covering three different periods (1987, 2000, and 2011) was pre-processed to correct atmospheric and radiometric parameters as well as gapfilling the 2011 SCL-off images. Then, the vegetation indices such as NDVI (normalized difference vegetation index), SR (simple ratio vegetation index), SAVI (soil-adjusted vegetation index), and CASA (carnegie- ames- stanford approach)model for NPP were applied on these images after masking the study area. The results showed a quiet decrease in the vegetation cover. The vegetation loss was more significant from 2000 to 2011 than from 1987 to 2000, and anthropogenic activities can be deemed as the main cause of the vegetation loss. The biomass assessment by NPP computation also showed a decrease over the time. Similar to the change of the vegetation cover, the ecosystem net productivity was very low in 2011 compared to 2000 and 1987. It seems that the general health condition of the vegetation, including its potentiality in carbon sinking, was negatively affected in this area, which has already been under threatened. A perpetual monitoring of these ecosystems by means of efficient techniques could enhance the sustainable management tools of in the framework of reducing emissions from deforestation and forest degradation (REDD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affaton P, Rahaman MA, Trompette R, et al. (1991)The Dahomeyide Orogen: Tectonothermal Evolution and Relationships with the Volta Basin. The West African Orogens and Circum-Atlantic Correlatives. R.D. Dallmeyer and J.P. Lécorché. Springer Berlin Heidelberg: 107–122. DOI: 10.1007/978-3-642-84153-8_6.

    Chapter  Google Scholar 

  • Ahmad F (2012) Spectral vegetation indices performance evaluated for Cholistan Desert. Journal of Geography and Regional Planning 5(6): 165–172. DOI: 10.5897/JGRP11.098

    Google Scholar 

  • Akpagana K (1992) Moist dense forest of Togo mountain. Bulletin of National Museum of Natural History, Paris, 4th series, 14, section B, Adansonia, 1: 109–172.

    Google Scholar 

  • Akpagana K (1989) Research on moist dense forest in Togo. PhD dissertation, University of Bordeaux III, Bordeaux, France. p 181.

    Google Scholar 

  • Alexandridis TK, Cherif I, Kalogeropoulos C, et al. (2013) Rapid error assessment for quantitative estimations from Landsat 7 gap-filled images. Remote Sensing Letters 4(9): 920–928. DOI: 10.1080/2150704X.2013.815380

    Article  Google Scholar 

  • Batjes NH (2001) Options for increasing carbon sequestration in West African soils: an exploratory study with special focus on Senegal. Land Degradation and Development 12(2): 131–142. DOI: 10.1002/ldr.444

    Article  Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, et al. (1998) A Remote Sensing Surface Energy Balance Algorithm for Land-1-formulation. Journal of Hydrology 212-213:198–212. DOI: 10.1016/S0022-1694(98)00253-4

    Article  Google Scholar 

  • Bastiaanssen WGM, Ali S (2003) A New Crop Yield Forecasting Model Based on Satellite Measurements Applied Across the Indus Basin, Pakistan. Agriculture, Ecosystems & Environment 24: 321–340. DOI: 10.1016/S0167-8809(02)00034-8

    Article  Google Scholar 

  • Blaser J, Sarre A, Poore D, et al. (2011) Status of Tropical Forest Management 2011. ITTO Technical Series No 38., International Tropical Timber Organization, Yokohama, Japan, p 420. ISBN 4-902045-78-8. Available online at: http://www.itto.int/news_releases/id=2663 (Accessed on 28 February 2013)

    Google Scholar 

  • Bond I, Chambwera M, Jones B, et al. (2010) REDD+ in dryland forests: Issues and prospects for pro-poor REDD in the miombo wooldands of southern Africa, Natural Resource Issues No. 21. IIED, London, UK. ISBN: 978-1-84369-764-0 ISSN: 1605–1017

    Google Scholar 

  • Brooks MT, Pimm LS, Oyugi OJ (2008) Time lag between deforestation and bird extinction in tropical forest fragments. Conservation Biology 13(5): 1140–1150. DOI: 10.1046/j.1523-1739.1999.98341.x

    Article  Google Scholar 

  • Budde EM, Tappan G, Rowland J, et al. (2004) Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis. Journal of Arid Environments 59(3): 481–498. DOI: 10.1016/j.jaridenv.2004.03.020

    Article  Google Scholar 

  • Ciais BP, Bombelli A, Williams M, et al. (2011) The carbon balance of Africa: synthesis of recent research studies. Philosophical Transactions: Mathematical, Physical and ai]_Engineering Sciences 369(1943): 2038–2057. DOI: 10.1098/rsta.2010.0328

    Article  Google Scholar 

  • Chavez SP Jr, Mackinnon JD (1994) Automatic detection of vegetation changes in the Southwestern United States using remotely sensed images. Photogrammetric Engineering and Remote Sensing 60(5): 571–582.

    Google Scholar 

  • Chavez PS (1996) Image-based atmospheric correctionsrevisited and revised. Photogrammetric Engineering and Remote Sensing 62(9): 1025–1036.

    Google Scholar 

  • Chen J, Zhu XL, Vogelmann EJ, et al. (2011) A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment 115: 1053–1064. DOI: 10.1016/j.rse.2010.12.010

    Article  Google Scholar 

  • Childs J (2012) PANCROMA Satellites images processing. TERRAINMAP Earth Imaging LLC 2010, 2011, 2012. Available online at: http://www.pancroma.com (Accessed on 28 January 2013)

    Google Scholar 

  • Christensen S, Goudriaan J (1993) Deriving Light Interception and Biomass from Spectral Reflection ratio. Remote Sensing Environment 48:87–95. DOI: 10.1016/0034-4257(93)90066-7

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publishers, New York, USA.

    Google Scholar 

  • Dale HV, Kline LK (2012) Issues in using landscape indicators to assess land changes. Ecological Indicators. DOI: 10.1016/j.ecolind.2012.10.007

    Google Scholar 

  • Desai M, Ganatra A (2012) Survey on gap filling in satellite images and inpainting Algorithm. International Journal of Computer Theory and Engineering 4(3): 341–345. DOI: 10.7763/ijcte.2012.v4.479

    Article  Google Scholar 

  • Diallo O, Diouf A, Hanan NP, et al. (1991) AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987–1990. International Journal of Remote Sensing 12: 1259–1279. DOI: 10.1080/01431169108929725

    Article  Google Scholar 

  • Dijk VA, Callis LS, Decker LW (1989) Comparison of vegetation indices derived from NOAA/AVHRR data for Sahelian crop assessments. Agricultural and Forest Meteorology 46(1–2): 23–40. DOI: 10.1016/0168-1923(89)90110-x

    Article  Google Scholar 

  • Dourma M (2008) Isoberlinia doka Craib & Stapf and Isoberlinia tomentosa (Harms) Craib & Stapf forests in Sudanian zone of Togo: Ecology, natural Regeneration and human activities. PhD Dissertation, University of Lome (Togo). p181.

    Google Scholar 

  • Ern H (1979) Die vegetation Togo. Gliederrung, Geféhrdung, Erhaltung. Willdenowia 9: 295–312.

    Google Scholar 

  • Fahey JT, Woodbury BP, Battles JJ, et al. (2009) Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment 8(5): 245–252. DOI: 10.1890/080169

    Article  Google Scholar 

  • Fahey TJ, Siccama TG, Driscoll CT, et al. (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75: 109–176. DOI: 10.1007/s10533-004-6321-y

    Article  Google Scholar 

  • Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of Environment 87(1): 111–121. DOI: 10.3724/sp.j.1010.2011.00526

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Rasmussen SM (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment 91: 490–507. DOI: 10.1016/j.rse.2004.04.009

    Article  Google Scholar 

  • Fensholt R (2004) Earth observation of vegetation status in the Sahelian and Sudanian West Africa: comparison of Terra MODIS and NOAA AVHRR satellite data. International Journal of Remote Sensing 25(9): 1641–1659. DOI: 10.1080/01431160310001598999

    Article  Google Scholar 

  • Ferencz Cs, Bognar P, Lichtenberger J, et al. (2004) Crop yield estimation by satellite remote sensing. International Journal of Remote Sensing 25(9): 4113–4149. DOI: 10.1080/01431160410001698870

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment 80: 185–201. DOI: 10.1016/s0034-4257(01)002954

    Article  Google Scholar 

  • Field CB, Randerson JT, Malmstrom CM (1995) Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sensing of Environment 51: 74–88. DOI: 10.1016/0034-4257(94)00066-v

    Article  Google Scholar 

  • Fuller OD (1998) Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. International Journal of Remote Sensing 19(10): 2013–2018. DOI: 10.1080/014311698215135

    Article  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, et al. (1995) Relationships between NDVI, canopy structure, and photosynthetic activity in three Californian vegetation types. Ecological Applications 5(1): 28–41. DOI: 10.2307/1942049

    Article  Google Scholar 

  • Gilabert MA, Gonzalez-Piqueras J, Garcia-Haro FJ, et al. (2002) A generalized soil-adjusted vegetation index. Remote Sensing of Environment 82: 303–310. DOI: 10.1016/s0034-4257(02)00048-2

    Article  Google Scholar 

  • Guelly KA (2000) Albizia spp. (Mimosaceae) in coffee plantations of Akposso plateau (Togo). Journal of Scientific Research, University of Benin (Togo) 4 (1): 84–92.

    Google Scholar 

  • Haboudane D, Miller RJ, Pattey E, et al. (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90: 337–352. DOI: 10.1016/j.rse.2003.12.013

    Article  Google Scholar 

  • Hagen CS, Heilman P, Marsett R, et al. (2012) Mapping Total Vegetation Cover Across Western Rangelands With Moderate-Resolution Imaging Spectroradiometer Data. Rangeland Ecology & Management 65: 456–467. DOI: 10.2111/rem-d-11-00188.1

    Article  Google Scholar 

  • Hairiah K, Dewi S, Agus F, et al. (2010) Measuring Carbon Stocks Across Land Use Systems: A Manual. Bogor, Indonesia. World Agroforestry Centre (ICRAF), SEA Regional Office, p. 155.

    Google Scholar 

  • Hatfield JL, Asrar G, Kanemasu ET (1984) Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. Remote Sensing of Environment 14:65–75. DOI: 10.1016/0034-4257(84)90008-7

    Article  Google Scholar 

  • Hayford EK (2008) Computing the net primary productivity for a Savanna-dominated ecosystem using stable isotopes: A case study of the Volta River Basin. West African Journal of Applied Ecology 12(1). DOI: 10.4314/wajae.v12i1.45745

    Google Scholar 

  • Hilker T, Coops CN, Wulder AM, et al. (2008) The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Science of the Total Environment 404: 411–423. DOI: 10.1016/j.scitotenv.2007.11.007

    Article  Google Scholar 

  • Huntzinger ND, Gourdji SM, Mueller KL, et al. (2011) A systematic approach for comparing modeled biospheric carbon fluxes across regional scales. Biogeosciences 8: 1579–1593. DOI: 10.5194/bg-8-1579-2011

    Article  Google Scholar 

  • Huete AR, Jackson RD (1987) Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sensing of the Environment 23(2): 213–232. DOI: 10.1016/0034-4257(87)90038-1

    Article  Google Scholar 

  • Huete AR (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 25: 295–309. DOI: 10.1016/0034-4257(88)90106-x

    Article  Google Scholar 

  • Howard SM, Lacasse MJ (2004) An evaluation of gap-filled landsat SLC-off imagery for wildland fire burn severity mapping. Photogrammetric Engineering & Remote Sensing 70(8): 877–880. DOI: 10.1080/10106040701207399

    Google Scholar 

  • Jackson DR, Huete RA (1991) Interpreting vegetation indices. Preventive Veterinary Medicine 11: 185–200. DOI: 10.1016/s0167-5877(05)80004-2

    Article  Google Scholar 

  • Jiang ZY, Huete AR, Kamel D, et al. (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 112: 3833–3845. DOI: 10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  • Jin Z, Qi YC, Dong YS (2007) Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosicaon Ordos Plateau of Inner Mongolia, China. Journal of Forestry Research 18(4): 298–300. DOI: 10.1007/s11676-007-0059-z

    Article  Google Scholar 

  • Justice C, Wilkie D, Zhang Q, et al. (2001) Central African forests, carbon and climate change. Climate Research 17: 229–246. DOI: 10.3354/cr017229

    Article  Google Scholar 

  • Kokou K, Atato A, Bellefontaine R, et al. (2006) Diversity of dry dense forest of Togo (West Africa). Revue Ecologie. (Terre Vie) 61: 225–246.

    Google Scholar 

  • Lamaroux M (1969) Comprehensive Notice of soils map of Togo. ORSTOM, Paris, 86 p.

    Google Scholar 

  • Laurance FW (1999) Reflections on the tropical deforestation crisis. Biological Conservation 91: 109–117. DOI: 10.1016/s0006-3207(99)00088-9

    Article  Google Scholar 

  • Li SG, Eugster W, Asanuma J, et al. (2008) Response of gross ecosystem productivity, light use efficiency and water use efficiency of Mongolian steppe to seasonal variations in soil moisture. Journal of Geophysical Research 113: 1–13. DOI: 10.1029/2006jg000349

    Google Scholar 

  • Liu SN, Zhou T, Wei LY, et al. (2012) The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin 57: 1699–1707. DOI: 10.1007/s11434-012-4998-1

    Article  Google Scholar 

  • Loss SO, Justice CO, Tucker CJ (1994) A global 1° by 1° NDVI dataset for climate studies derived from the GIMMS continental NDVI data. International Journal of Remote Sensing 15: 3493–3518. DOI: 10.1080/01431169408954342

    Article  Google Scholar 

  • Marsett CR, Qi J, Heilman P, et al. (2006) Remote sensing for grassland management in the arid southwest. Rangel and Ecology & Management 59(5): 530–540. DOI: 10.2111/05-201r.1

    Article  Google Scholar 

  • Maxwell S (2004) Filling landsat ETM+ SLC-off gaps using a segmentation model approach. Photogrammetric Engineering & Remote Sensing 70(10): 1109–1111.

    Google Scholar 

  • Maxwell S, Schmidt GL, Storey JC (2007) A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLCoff images. International Journal of Remote Sensing 28(23): 5339–5356. DOI: 10.1080/01431160601034902

    Article  Google Scholar 

  • Miles L, Newton CA, De Fri es SR, et al. (2006) A global overview of the conservation status of tropical dry forests. Journal of Biogeography 33(3): 491–505. DOI: 10.1111/j.1365-2699.2005.01424.x

    Article  Google Scholar 

  • Mo X, Liu S, Lin Z, et al. (2005) Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling 183: 301–322. DOI: 10.1016/j.ecolmodel.2004.07.032

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystem. Journal of Applied Ecology 9: 747–766. DOI: 10.2307/2401901

    Article  Google Scholar 

  • Moreno Ruiz AJ, Barón Martínez J, Cantón Garbín M (2005) Estimating above-ground burned biomass and CO2 emissions for tropical Africa for the year 1990 with the NOAA-NASA Pathfinder AVHRR 8 km land dataset. International Journal of Remote Sensing 26(11): 2407–2422. DOI: 10.1080/01431160500033476

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, et al. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626): 698–702. DOI:10.1038/386698a0

    Article  Google Scholar 

  • Peng DL, Zhang B, Liu LY, et al. (2012) Characteristics and drivers of global NDVI-based FPAR from 1982 to 2006. Global Biogeochemical Cycles 26: GB3015. DOI: 10.1029/2011GB004060 PNUD (1983) Ecogeographic map of Togo (1/500000): Soils Conservation and management. Projet PNUD/FAO/TOG/83/009.

    Article  Google Scholar 

  • Potter SC, Davidson AE, Klooster SA, et al. (1998) Regional application of an ecosystem production model for studies of biogeochemistry in Brazilian Amazonia. Global Change Biology 4: 315–333. DOI: 10.1046/j.1365-2486.1998.00154.x

    Article  Google Scholar 

  • Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change 115(2): 365–378. DOI: 10.1007/s10584-012-0460-2

    Article  Google Scholar 

  • Richter R (1996) Spatially adaptive fast atmospheric correction algorithm. International Journal of Remote Sensing 17: 1201–1214. DOI: 10.1080/01431169608949077

    Article  Google Scholar 

  • Richter R (2008) Atmospheric/topographic correction for satellite imagery: ATCOR-2/3 User Guide. Available online at: http://www.rese.ch/pdf/atcor23-manual.pdf (Accessed on March 2008)

    Google Scholar 

  • Santos P, Negri JA (1997) A comparison of the normalized difference vegetation index and rainfall for the Amazon and Northeastern Brazil. Journal of Applied Meteorology 36: 958–965. DOI: 10.1175/1520-0450(1997)036<0958:acotnd>2.0.co;2

    Article  Google Scholar 

  • Scaramuzza P, Micijevic, E, Chander G (2004) SLC Gap-Filled Products - Phase One Methodology. 18 March 2004. Available online at: http://landsat.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf

    Google Scholar 

  • Sierra R (2000) Dynamics and patterns of deforestation in the western Amazon: the Napo deforestation front, 1986–1996. Applied Geography 20(1): 1–16. DOI: 10.1016/s0143-6228(99)00014-4

    Article  Google Scholar 

  • Silleos NG, Alexandridis TK, Gitas IZ, et al. (2006) Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International 21(4): 21–28. DOI: 10.1080/10106040608542399

    Article  Google Scholar 

  • Simpara N (1978) Geologic and structure study of extern unit of panafrican chain (600MA) of Dahomeyides in Bassar Region (Togo). Doctor at Dissertation, University of Marseille (France). p 164.

    Google Scholar 

  • Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260: 1905–1909. DOI: 10.1126/science.260.5116.1905

    Article  Google Scholar 

  • Tang GP, Beckage B, Smith B, et al. (2010) Estimating potential forest NPP, biomass and their climatic sensitivity in New England using a dynamic ecosystem model. Ecosphere 1(6): 1–20. DOI: 10.1890/es10-00087.1

    Article  Google Scholar 

  • Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. International Journal of Remote Sensing 7: 1395–1416. DOI: 10.1080/01431168608948944

    Article  Google Scholar 

  • Vicente-Serrano MS, Lasanta T, Gracia C (2010) Aridification determines changes in forest growth in Pinushalepensis forests under semiarid Mediterranean climate conditions. Agricultural and Forest Meteorology 150: 614–628. DOI: 10.1016/j.agrformet.2010.02.002

    Article  Google Scholar 

  • Wan H, Wang J, Liang S, et al. (2009) Estimating leaf area index by fusing MODIS and MISR data. Spectroscopy and Spectral Analysis 29: 3106–3111. DOI: 10.1109/igarss.2006.470

    Google Scholar 

  • Wang SQ, Zhou L, Chen JM, et al. (2011) Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. Journal of Environmental Management 92: 1651–1662. DOI: 10.1016/j.jenvman.2011.01.024

    Article  Google Scholar 

  • Wang F, Xu J (2010) Comparison of remote sensing change detection techniques for assessing hurricane damage to forests. Environmental Monitoring and Assessment 162:311–326. DOI:10.1007/s10661-009-0798-8

    Article  Google Scholar 

  • Wang GL, Eltahir EAB (2002) Impact of CO2 concentration changes on the biosphere-atmosphere system of West Africa. Global Change Biology 8: 1169–1182. DOI: 10.1046/j.1365-2486.2002.00542.x

    Article  Google Scholar 

  • Wilson EF, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment 80: 385–396. DOI: 10.1016/s0034-4257(01)00318-2

    Article  Google Scholar 

  • Zhang J, Pan XL, Gao ZQ, et al. (2006) Carbon uptake and change in net primary productivity of oasis-desert ecosystem in arid western China with remote sensing technique. Journal of Geographical Sciences 16(3): 315–325. DOI: 10.1007/s11442-006-0307-8

    Article  Google Scholar 

  • Zhang Y, Xu M, Chen H, et al. (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography 18: 280–290. DOI: 10.1111/j.1466-8238.2008.00442.x

    Article  Google Scholar 

  • Zhang C, Li W, Travis D (2007) Gaps-fill of SLC-off Landsat ETM+satellite image using ageostatistical approach. International Journal of Remote Sensing 28 (22): 5103–5122. DOI: 10.1080/01431160701250416

    Article  Google Scholar 

  • Zhang YJ, Yu GR, Yang J, et al. (2013) Climate-driven global changes in carbon use efficiency. Global Ecology and Biogeography 23(2): 144–155. DOI: 10.1111/geb.12086

    Article  Google Scholar 

  • Zhao X, Zhou DJ, Fang JY (2012) Satellite-based studies on large-scale vegetation changes in China. Journal of Integrative Plant Biology 54(10): 713–728. DOI: 10.1111/j.1744-7909.2012.01167.x

    Article  Google Scholar 

  • Zhou GS, Zhang XS (1995) A natural vegetation NPP model. Acta Phytoecologica Sinica 19(3): 193–200. (In Chinese) DOI: 10.1007/s11769-006-p0334-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fousseni Folega.

Additional information

http://orcid.org/0000-0001-9097-3524

http://orcid.org/0000-0002-6546-0

http://orcid.org/0000-0002-6864-9039

http://orcid.org/0000-0002-7533-6356

http://orcid.org/0000-0002-5947-4038

http://orcid.org/0000-0003-3335-203X

http://orcid.org/0000-0003-3091-5060

http://orcid.org/0000-0003-4073-6998

http://orcid.org/0000-0003-0879-4063

http://orcid.org/0000-0003-4290-8861

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folega, F., Woegan, Y.A., Marra, D. et al. Long term evaluation of green vegetation cover dynamic in the Atacora Mountain chain (Togo) and its relation to carbon sequestration in West Africa. J. Mt. Sci. 12, 921–934 (2015). https://doi.org/10.1007/s11629-013-2973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-013-2973-1

Keywords

Navigation