Protocorm-like bodies (PLBs) of Dendrobium Sabin Blue: a novel source for in vitro production of dendrobine and anthocyanin

Abstract

Dendrobium hybrids have been cultivated as commercially important ornamental plants in the floriculture industry. However, the potential of Dendrobium hybrids as a source of valuable secondary metabolites has not been fully exploited. In this study, the effect of various elicitors on the proliferation of protocorm-like bodies (PLBs) of Dendrobium Sabin Blue and the corresponding production of dendrobine and anthocyanin was investigated. Yeast extract (YE) and glutamine (both at 200 mg L−1) increased dendrobine content in PLBs by 2.7- and 6.5-fold (54.874 ± 2.553 and 894.481 ± 26.185 ng mg−1dry weight (DW)) compared to controls (20.051 ± 0.182 and 136.956 ± 7.397 ng mg−1 DW). Glutamine (200 mg L−1) also significantly enhanced PLB biomass (0.190 ± 0.009 g) with respect to the control (0.144 ± 0.003 g). Chitosan and salicylic acid (SA) were not effective in enhancing the dendrobine and anthocyanin contents in PLBs. A combination of 4 mg L−1 NAA and 100 mg L−1 arginine increased dendrobine content by 8-fold (123.793 ± 5.446 ng mg−1 DW) compared to the control (15.554 ± 0.406 ng mg−1 DW). Anthocyanin content was increased by 1.7-fold (0.548 ± 0.019 Color Value (CV) g−1 DW) when PLBs treated with 4 mg L−1 TDZ were exposed to 1.5 h of UV irradiation as compared to those without UV treatment (0.331 ± 0.019 CV g−1 DW). Despite the low dendrobine content, PLBs as a source of dendrobine remains appealing due to its short culture duration (6 wk) compared to mother plants (2 yr).

This is a preview of subscription content, access via your institution.

References

  1. Bhattacharyya P, Kumaria S, Job N, Tandon P (2015) Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: a threatened, medicinal orchid. Plant Cell Tiss Org Cult 122:535–550

    CAS  Article  Google Scholar 

  2. Bulpitt CJ, Li Y, Bulpitt PF, Wang J (2007) The use of orchids in Chinese medicine. JR Soc Med 100:558–563

    Article  Google Scholar 

  3. Carlsson J, Svennerstam H, Moritz T, Egertsdotter U, Ganeteg U (2017) Nitrogen uptake and assimilation in proliferating embryonic cultures of Norway Spruce–investigating the specific role of glutamine. PLoS One 12(8):e0181785–e0191208. https://doi.org/10.1371/journal.pone.0191208

    Article  PubMed  PubMed Central  Google Scholar 

  4. Canter PH, Ernst E (2004) Anthocyanosides of Vaccinium myrtillus (bilberry) for night vision - a systematic review of placebo-controlled trials. Surv Ophthalmol 49:38–50

    PubMed  Article  Google Scholar 

  5. Chen ND, You T, Li J, Bai LT, Hao JW, Xu XY (2016) A comparative study of three tissue-cultured Dendrobium species and their wild correspondences by headspace gas chromatography-mass spectrometry combined with chemometric methods. J Food Drug Anal 24:839–847

    CAS  PubMed  Article  Google Scholar 

  6. Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217

    Article  Google Scholar 

  7. Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tiss Org Cult 124:483–493

    CAS  Article  Google Scholar 

  8. Fursova AZ, Gesarevich OG, Gonchar AM (2005) Dietary supplementation with bilberry extract prevents macular degeneration and cataracts in senesce-accelerated OXYS rats. Adv Gerontol 16:76–79

    PubMed  Google Scholar 

  9. Guo Z, Zhou Y, Yang J, Shao X (2019) Dendrobium candidum extract inhibits proliferation and induces apoptosis of liver cancer cells by inactivating Wnt/β-catenin signalling pathway. Biomed Pharmacother 110:371–379

    CAS  PubMed  Article  Google Scholar 

  10. Hew CS, Arditti J, Lin WS (1997) Three orchids used as herbal medicines in China: an attempt to reconcile Chinese and Western pharmacology. Reviews and perspectives VII. Editors J Arditti, AM Pridgeon. Kluwer Academic Publishers. Dordrecht/Boston/London, Orchid Biology, pp 213–283

    Google Scholar 

  11. Holme IB, Krogstrup P, Hansen J (1997) Embryogenic callus formation and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda Giganteus’ as affected by proline. Plant Cell Tiss Org Cult 50:203–210

    CAS  Article  Google Scholar 

  12. Hossain MM (2011) Therapeutic orchids: traditional use and recent advances – an overview. Fitoterapia 82:102–140

    PubMed  Article  Google Scholar 

  13. Huang C, Chen C (2005) Physical properties of culture vessels for plant tissue culture. Biosyst Eng 91:501–511

    Article  Google Scholar 

  14. Jayaprakasam B, Vareed SK, Olson LK (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31

    CAS  PubMed  Article  Google Scholar 

  15. Jiang W, Jiang B, Mantri N, Wu A, Mao L, Lu H, Tao Z (2014) Comparative ecophysiological analysis of photosynthesis, biomass allocation, polysaccharide and alkaloid content in three Dendrobium candidum cultivars. Plant Omics 7:117–122

    CAS  Google Scholar 

  16. Karwasara VS, Jain R, Tomar P, Dixit VK (2010) Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol - Plant 46:354–362

    CAS  Article  Google Scholar 

  17. Kaur S, Bhandari P, Bhutani KK (2015) Characterization of bioactive compounds at seedling stage and optimization of seed germination, culture multiplication of Dendrobium nobile Lindl. – a study in vitro. Int J Adv Res 3:1041–1052

    CAS  Google Scholar 

  18. Kudo Y, Tanaka A, Yamada K (1983) Dendrobine, an antagonist of –alanine, taurine and of presynaptic inhibition in the frog spinal cord. Br J Pharmacol 78:709–715

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lee YI, Hsu ST, Yeung EC (2013) Orchid protocorm-like bodies are somatic embryos. Am J Bot 100:2121–2131

    CAS  PubMed  Article  Google Scholar 

  20. Lei Z, Zhou C, Ji X, Wei G, Huang Y, Yu W, Luo L, Qiu Y (2018) Transcriptome analysis reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations. Sci Rep 8:6373

  21. Li XL, Hong M (2020) Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats. Kaohsiung J Med Sci 36:43–53

    CAS  PubMed  Article  Google Scholar 

  22. Mahendran D, KaviKishor PB, Sreeramanan S, Venkatachalam P (2018) Enhanced biosynthesis of colchicine and thiocolchicoside contents in cell suspension cultures of Gloriosa superba L. exposed to ethylene inhibitor and elicitors. Ind Crop Prod 120:123–130

    CAS  Article  Google Scholar 

  23. Martin KP, Madassery J (2006) Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Sci Hortic 108:95–99

    CAS  Article  Google Scholar 

  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  25. Pan LH, Li XF, Wang MN, Zha XQ, Yang XF, Liu ZJ, Luo YB, Luo JP (2014) Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol 64:420–427

    CAS  PubMed  Article  Google Scholar 

  26. Pan LH, Lu J, Luo JP, Zha XQ, Wang JH (2012) Preventive effect of a galactoglucomannan (GGM) from Dendrobium huoshanense on selenium-induced liver injury and fibrosis in rats. Exp Toxicol Pathol 64:899–904

    CAS  PubMed  Article  Google Scholar 

  27. Parast BM, Chetri SK, Sharma K, Agrawal V (2011) In vitro isolation, elicitation of psoralen in callus cultures of Psoralen in callus cultures of Psoralea corylifolia and cloning of psoralen synthase gene. Plant Physiol Biochem 49:1138–1146

    CAS  PubMed  Article  Google Scholar 

  28. Park WT, Arasu MV, Al-Dhani NA, Yeo SK, Jeon J, Park JS, Lee SY, Park SU (2016) Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induced the accumulation of rosmarinic acid in Agastache rugosa cell culture. Molecules. 21:426. https://doi.org/10.3390/molecules21040426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswski M, Cusidό RM, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182. https://doi.org/10.3390/molecules21020182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Rojas-Méndez KJ, Penaloza-Ramirez JM, Rocha-Ramirez V, Cortes-Palomec A, McCauley RA, Oyama K (2017) Massive extraction of the orchid Laelia speciosa (HBK) Schltr. for trading in local markets affect its population genetic structure in a fragmented landscape in Central Mexico. Trop Conserv Sci 10:1–14

    Article  Google Scholar 

  31. Sarmadi M, Karimi N, Palazon J, Ghassempour A, Mirjalili MH (2019) Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell Tiss Org Cult 137:319–328

    CAS  Article  Google Scholar 

  32. Silja PK, Satheeshkumar K (2015) Establishment of adventitious root cultures from leaf explants of Plumbago rosea and enhanced plumbagin production through elicitation. Ind Crop Prod 76:479–489

    CAS  Article  Google Scholar 

  33. Simoes C, Bizarri CHB, da Silva CL, de Castro TC, Coutada LCM, da Silva AJR, Albarello N, Mansur E (2009) Anthocyanin production in callus cultures of Cleome rosea: modulation of culture conditions and characterisation of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Biochem 47:895–903

    CAS  PubMed  Article  Google Scholar 

  34. Subedi A, Kunwar B, Choi Y, Van Andel T, Chaudhary RP, De Boer HJ, Gravendeel B (2013) Collection and trade of wild-harvested orchids in Nepal. J Ethnobiol Ethnomed 9:64. https://doi.org/10.1186/1746-4269-9-64

    Article  PubMed  PubMed Central  Google Scholar 

  35. Syklowska-Baranek K, Lysik K, Jeziorek M, Wencel A, Gajcy M, Pietrosiuk A (2018) Lignan accumulation in two-phase cultures of Taxus x media hairy roots. Plant Cell Tiss Org Cult 133:371–384

    CAS  Article  Google Scholar 

  36. Tan SH, Manap SA, Karim MR, Shah SR, Mahmood M, Ma NL (2014) Comparative flower pigment study of orchid plants. Adv Environ Biol 8:20–24

    Google Scholar 

  37. Tian CC, Zha XQ, Luo JP (2015) A polysaccharide from Dendrobium huoshanense prevents hepatic inflammatory response caused by carbon tetrachloride. Biotechnol Biotechnol Equip 29:132–138

    CAS  PubMed  Article  Google Scholar 

  38. Tiwari AP, Joshi B, Ansari AA (2012) Less known ethnomedicinal uses of some orchids by the tribal inhabitants of Amarkantak Plateau, Madhya Pradesh, India. Nat Sci 10:33–37

    Google Scholar 

  39. Trigiano RN, Conger BV (1987) Regulation of growth and somatic embryogenesis by proline and serine in suspension cultures of Dactylis glomerata. J Plant Physiol 130:49–55

    CAS  Article  Google Scholar 

  40. Vasudevan R, van Staden J (2010) Fruit harvesting time and corresponding morphological changes of seed integuments influence in vitro seed germination of Dendrobium nobile Lindl. Plant Growth Regul 60:237–246

    CAS  Article  Google Scholar 

  41. Vendrame WA, Carvalho VS, Dias JMM, Maguire I (2008) Pollination of Dendrobium hybrids using cryopreserved pollen. HortScience 43:264–267

    Article  Google Scholar 

  42. Wang H, Zhao T (1985) Dendrobine and 3-hydroxy-2-oxodendrobine from Dendrobium nobile. J Nat Prod 48:796–801

    CAS  Article  Google Scholar 

  43. Xia M, Ling W, Zhu H (2007) Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution. Arterioscler Thromb Vasc Biol 27:519–524

    CAS  PubMed  Article  Google Scholar 

  44. Xu J, Guan J, Chen XJ, Zhao J, Li SP (2011) Comparison of polysaccharides from different Dendrobium using saccharide mapping. J Pharm Biomed Anal 55:977–983

    CAS  PubMed  Article  Google Scholar 

  45. Xu J, Han QB, Li SL, Chen XJ, Wang XN, Zhao ZZ, Chen HB (2013) Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem Rev 12:341–367

    CAS  Article  Google Scholar 

  46. Xu J, Zhao WM, Qian ZM, Guan J, Li SP (2010) Fast determination of five components of coumarin, alkaloids and bibenzyls in Dendrobium spp. using pressurized liquid extraction and ultra-performance liquid chromatography. J Sep Sci 33:1580–1586

    CAS  PubMed  Article  Google Scholar 

  47. Yao R, Piao XC, Li TJ, Shao CH, Lian ML (2012) Cultivation of protocorms of Dendrobium candidum in air-lift bioreactors. China J Chinese Mater Med 37:3763–3767

    Google Scholar 

  48. Zhang L, Fan MC, Feng X, Liu XY, Wei R (2011) Study on the extraction of Dendrobium candidum polysaccharides and dendrobine by cellulose. Chem Res Application 23:356–359

    Google Scholar 

  49. Zhang X, Hao L, Hong K, Yi Y (2014) Growth, dendrobine content and photosynthetic characteristics of Dendrobium nobile under different solar irradiances. Plant Omics 7:461–467

    Google Scholar 

  50. Zhang YB, Wang J, Wang ZT, But PP, Shaw PC (2003) DNA microarray for identification of the herb of Dendrobium species from Chinese medicinal formulations. Planta Med 69:1172–1174

    CAS  PubMed  Article  Google Scholar 

  51. Zheng Y, Jiang W, Silva EN, Mao L, Hannaway DB, Lu H (2012) Optimization of shade condition and harvest time for Dendrobium candidum plants based on leaf gas exchange, alkaloids and polysaccharides contents. Plant Omics 5:253–260

    CAS  Google Scholar 

  52. Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58:1771–1781

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

The authors would like to thank the Universiti Sains Malaysia Research University (USM-RU) Grant Scheme (1001/PBIOLOGI/811309) for supporting this study.

Author information

Affiliations

Authors

Contributions

CKC designed and conducted the experiments, analyzed the data, and wrote the manuscript. SS conceptualized and supervised the research. BLC supervised the research. AM, SR, and MV performed chemical analysis and validated the chemical data. CS critically revised and edited the manuscript.

Corresponding author

Correspondence to Sreeramanan Subramaniam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Key message

• To date, dendrobine and anthocyanins have not been reported in PLBs of Dendrobium species.

• In this study, PLBs of Dendrobium ‘Sabin Blue’ were used for producing dendrobine and anthocyanin compounds.

• This study aimed to establish an efficient PLB culture system of Dendrobium ‘Sabin Blue’ that can enhance the production of dendrobine and anthocyanin by using elicitors, amino acids, plant growth regulators (PGRs), and ultraviolet (UV) light exposure.

• Dendrobine and anthocyanin contents of PLBs, in vitro, and mother plants were compared to make a preliminary assessment of the enhancement strategies.

Editor: Praveen Saxena

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chin, C.K., Stanly, C., Muniandy, A. et al. Protocorm-like bodies (PLBs) of Dendrobium Sabin Blue: a novel source for in vitro production of dendrobine and anthocyanin. In Vitro Cell.Dev.Biol.-Plant (2021). https://doi.org/10.1007/s11627-021-10159-3

Download citation

Keywords

  • Plant growth regulators
  • Amino acids
  • Elicitors
  • Orchid tissue culture
  • Secondary metabolites