Advertisement

Efficient protocol for in vitro mass micropropagation of slash pine

  • Sandra Nunes
  • Diana Sousa
  • Vanessa T. Pereira
  • Sandra Correia
  • Liliana Marum
  • Conceição Santos
  • Maria C. Dias
Plant Tissue Culture

Abstract

An efficient protocol was developed for large-scale micropropagation of slash pine (Pinus elliottii Engelm. var. elliottii). For that, explants consisting of shoot apices 1.5–2.0 cm in length from 4 wk-old seedlings were cultured on two different basal media (Murashige & Skoog (MS) and Westvaco WV5 (WV5)). All media were supplemented with 6-benzylaminopurine (BAP), to stimulate the formation of axillary buds. Best bud induction was achieved, after 4 wk, on Westvaco WV5 medium (with 10-μM BAP) with rates close to 100%, and an average number of ~ 7 new buds formed per explant. Elongation took place for 6 wk on Westvaco WV5 medium containing activated charcoal (0.2% (w/v)) and without growth regulators. Rooting took place on half-strength Westvaco WV5 medium containing 9.8-μM indole-3-butyric acid (IBA). After 6 wk, root primordia were visible in ~ 43% of shoots. The acclimatization protocol was also optimized by controlling relative humidity, light/photoperiod, temperature, and nutrition, which led to an acclimatization success of ~ 89%. Flow cytometry analysis of DNA-ploidy did not show any variation between micropropagated plants and seedlings. With the protocol here described, it is possible to obtain a high number of genetically uniform plants per explant, 1 yr after in vitro germination of slash pine seeds.

Keywords

Flow cytometry Micropropagation Pinus elliottii Ploidy 

Notes

Acknowledgements

Authors thank technical support of A Costa and J Manso.

Funding information

This work was supported by the support of QREN to Klon-UA collaboration and by FEDER/COMPETE/POCI for Projects POCI-01-0145-FEDER-006958 and POCI/01/0145/FEDER/007265 and National Funds of FCT/MEC FEDER co-funding within Partnership Agreement PT2020 UID/QUI/50006/2013, PEst-OE/BIA/UI4004/2011, UID/QUI/00062/2013. FCT supported M Dias (SFRH/BPD/100865/2014) and S Correia (SFRH/BPD/91461/2012).

References

  1. Abdullah AA, Yeoman MM, Grace J (1987) Micropropagation of mature calabrian pine (Pinus brutia ten.) from fascicular buds. Tree Physiol 3(2):123–136.  https://doi.org/10.1093/treephys/3.2.123 CrossRefPubMedGoogle Scholar
  2. Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.) Ann For Sci 63(8):879–885.  https://doi.org/10.1051/forest:2006071 CrossRefGoogle Scholar
  3. Alvarez JM, Majada J, Ordas RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175–184CrossRefGoogle Scholar
  4. Brito G, Lopes T, Loureiro J, Rodriguez E, Santos C (2010) Assessment of genetic stability of two micropropagated wild olive species using flow cytometry and microsatellite markers. Trees 24:723–732CrossRefGoogle Scholar
  5. Burns JA, Schwarz OJ, Schlarbaum SE (1991) Multiple shoot production from seedling explants of slash pine (Pinus elliottii, Engelm.) Plant Cell Rep 10(9):439–443.  https://doi.org/10.1007/BF00233810 CrossRefPubMedGoogle Scholar
  6. Calixto F, Pais MS (1997) Adventitious shoot formation and plant regeneration from Pinus pinaster Sol. Ex Aiton. In Vitro Cell Dev Biol Plant 33(2):119–124.  https://doi.org/10.1007/s11627-997-0008-8 CrossRefGoogle Scholar
  7. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotech J 1(3):141–154.  https://doi.org/10.1046/j.1467-7652.2003.00020.x CrossRefGoogle Scholar
  8. Cézar TM, Higa AR, Koehler HS, Ribas LLF (2015) Influence of culture medium, explant length and genotype on micropropagation of Pinus taeda L. Ciência Florestal 25:13–22Google Scholar
  9. Coke JE (1996) Basal nutrient medium for in vitro cultures of loblolly pines. Google PatentsGoogle Scholar
  10. Conde P, Loureiro J, Santos C (2004) Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. Plant Cell Rep 22:632–639CrossRefPubMedGoogle Scholar
  11. Cortizo M, de Diego N, Moncaleán P, Ordás RJ (2009) Micropropagation of adult stone pine (Pinus pinea L.) Trees 23(4):835–842.  https://doi.org/10.1007/s00468-009-0325-0 CrossRefGoogle Scholar
  12. De Diego N, Montalbán IA, Fernandez de Larrinoa E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38(10):2607–2615.  https://doi.org/10.1139/X08-102 CrossRefGoogle Scholar
  13. De Diego N, Montalbán IA, Moncaleán P (2010) In vitro regeneration of adult Pinus sylvestris L. trees. S Afr J Bot 76(1):158–162.  https://doi.org/10.1016/j.sajb.2009.09.007 CrossRefGoogle Scholar
  14. Dias MC, Pinto G, Correia CM, Moutinho-Pereira J, Silva S, Santos C (2013) Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biol Plant 57(1):33–40.  https://doi.org/10.1007/s10535-012-0234-8 CrossRefGoogle Scholar
  15. Jain SM, Dong N, Newton RJ (1989) Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci 65:233–241CrossRefGoogle Scholar
  16. Kalia RK, Arya S, Kalia S, Arya ID (2007) Plantlet regeneration from fascicular buds of seedling shoot apices of Pinus roxburghii Sarg. Biol Plant 51(4):653–659.  https://doi.org/10.1007/s10535-007-0138-1 CrossRefGoogle Scholar
  17. Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152CrossRefPubMedGoogle Scholar
  18. López M, Pacheco J, Rodríguez R, Ordás RJ (1996) Regeneration of plants from isolated cotyledons of salgareño pine (Pinus nigra Arn. ssp. Salzmannii (Dunal) Franco). In Vitro Cell Dev Biol Plant 32(2):109–114.  https://doi.org/10.1007/BF02823140 CrossRefGoogle Scholar
  19. Loureiro J, Capelo A, Brito G, Rodriguez E, Silva S, Pinto G, Santos C (2007) Micropropagation of Juniperus phoenicea from adult plant explants and analysis of ploidy stability using flow cytometry. Biol Plant 51:7–14CrossRefGoogle Scholar
  20. Marum L, Loureiro J, Rodriguez E, Santos C, Oliveira MM, Miguel C (2009) Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis. J Biotechnol 143(4):288–295.  https://doi.org/10.1016/j.jbiotec.2009.08.001 CrossRefPubMedGoogle Scholar
  21. Meyer HJ (1998) In vitro formation of adventitious buds on mature embryos of Pinus elliottii Engelm. × P. caribaea morelet hybrids. S Afr J Bot 64(3):220–225.  https://doi.org/10.1016/S0254-6299(15)30872-3 CrossRefGoogle Scholar
  22. Montalban IA, De Diego N, Moncalean P (2011) Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 84:363–373CrossRefGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  24. Nandwani D, Kumaria S, Tandon P (2001) Micropropagation of Pinus kesiya Royle Ex Gord (khasi pine). Gartenbauwissenschaft 66:68–71Google Scholar
  25. Newton R, Marek-Swize K, Magallanes-Cedeno M, Dong N, Sen S, Jain S (1995) Somatic embryogenesis in slash pine (Pinus elliottii Engelm.) In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Vol 3. Gymnosperms. Kluwer Academic Publishers, The Netherlands, pp 183–195.  https://doi.org/10.1007/978-94-011-0960-4_11 CrossRefGoogle Scholar
  26. Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Dias MC, Santos C (2017a) Plant regeneration from ploidy-stable cryopreserved embryogenic lines of the hybrid Pinus elliottii × P. caribaea. Ind Crop Prod 105:215–224.  https://doi.org/10.1016/j.indcrop.2017.05.015 CrossRefGoogle Scholar
  27. Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, Mano N, Figueiredo J, Dias MC, Santos C (2017b) Somatic embryogenesis of hybrid Pinus elliottii Var. Elliottii × P. caribaea Var. Hondurensis and ploidy assessment of somatic plants. Plant Cell Tissue Organ Cult 132(1):71–84.  https://doi.org/10.1007/s11240-017-1311-7 CrossRefGoogle Scholar
  28. Oliveira L, Ribas L, Quoirin M, Koehler H, Amano E, Higa A (2012) Micropropagation of Pinus taeda L. from juvenile material. Tree For Sci Biotech 6:96–101Google Scholar
  29. Pérez-Bermúdez P, Sommer HE (1987) Factors affecting adventitious bud induction in Pinus elliottii (Engelm.) embryos cultured in vitro. Plant Cell Tissue Organ Cult 11(1):25–35.  https://doi.org/10.1007/BF00036573 CrossRefGoogle Scholar
  30. Pinto G, Silva S, Park Y, Neves L, Araújo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tissue Organ Cult 95(1):79–88.  https://doi.org/10.1007/s11240-008-9418-5 CrossRefGoogle Scholar
  31. Saborio F, Dvorak WS, Donahue JK, Thorpe TA (1997) In vitro regeneration of plantlets from mature embryos of Pinus ayacahuite. Tree Physiol 17(12):787–796.  https://doi.org/10.1093/treephys/17.12.787 CrossRefPubMedGoogle Scholar
  32. Stojičić D, Janošević D, Uzelac B, Čokeša V, Budimir S (2012) Micropropagation of Pinus peuce. Biol Plant 56:362–364CrossRefGoogle Scholar
  33. Tang W, Newton R (2007) Protocols for micropropagation of woody trees and fruits. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits, Springer Netherlands, pp 15–22Google Scholar
  34. Tang W, Newton RJ, Charles TM (2006) Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). J Plant Physiol 163(1):98–101.  https://doi.org/10.1016/j.jplph.2005.04.030 CrossRefPubMedGoogle Scholar
  35. Tereso S, Gonçalves S, Marum L, Oliveira M, Maroco J, Miguel C (2006) Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster Ait. Propag Ornam Plants 6:24–33Google Scholar
  36. Van Iersel MW, Bugbee B (1996) Phytotoxic effects of benzimidazole fungicides on bedding plants. J Am Soc Hortic Sci 121(6):1095–1102PubMedGoogle Scholar
  37. Žel J, Gogala N, Camloh M (1988) Micropropagation of Pinus sylvestris. Plant Cell Tissue Organ Cult 14:169–175CrossRefGoogle Scholar
  38. Zhu L-H, Wu X-Q, Qu H-Y, Ji J, Ye J (2010) Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tissue Organ Cult 102(1):121–128.  https://doi.org/10.1007/s11240-010-9711-y CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  1. 1.KLÓN—Innovative Technologies from Cloning, S.A., Biocant ParkParque Tecnológico de CantanhedeCantanhedePortugal
  2. 2.Centre for Functional Ecology (CEF), Department of Life ScienceUniversity of Coimbra, Calçada Martim de FreitasCoimbraPortugal
  3. 3.Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja)BejaPortugal
  4. 4.Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM)Universidade de ÉvoraÉvoraPortugal
  5. 5.Department of Biology, Faculty of Sciences & LAQV/REQUIMTEUniversity of PortoPortoPortugal
  6. 6.Department of Chemistry and QOPNAUniversity of AveiroAveiroPortugal

Personalised recommendations