Skip to main content
Log in

NMR-based metabolomics profile comparisons to distinguish between embryogenic and non-embryogenic callus tissue of sugarcane at the biochemical level

  • Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR)-based metabolomics profile comparisons of embryogenic and non-embryogenic calli of sugarcane were performed using principal component analysis (PCA) to determine a possible relationship between certain metabolites and somatic embryogenesis. Mahalanobis distance (DM) analysis showed significant metabolic profile differences between the embryogenic and non-embryogenic callus groups. Significantly different spectral buckets and their corresponding metabolites have been identified using volcano- and loading-plot analyses, where glucose, fructose, sucrose, and alanine were observed at higher concentrations and asparagine, glutamine, lysine, 2-hydroxyisobutyrate, and choline were observed at lower concentrations in embryogenic calli than in non-embryogenic calli. The results of this research indicate possible roles of different sugars, amino acids, and aliphatic compounds during sugarcane somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arencibia A (1999) Gene transfer in sugarcane. In: Hohn T, Leisinger KM (eds) Biotechnology of food crops in developing countries. Plant Gene Research, pp 79–104

  • Arencibia AD, Carmona E, Cornide MT, Menendez E, Molina P (2000) Transgenic sugarcane (Saccharum species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 46. Transgenic crops I. Springer, Heidelberg, pp 188–206

    Google Scholar 

  • Blanc G, Lardet L, Martin A, Jacob JL, Carron MP (2002) Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Müll. Arg.). J Exp Bot 53:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Chanprame S, Kuo TM, Widholm JM (1998) Soluble carbohydrate of soybean [Glycine max (L.) Merr.] somatic and zygotic embryos during development. In Vitro Cell Dev Biol Plant 34:64–68

    Article  CAS  Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JTJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claparols I, Santos MA, Torne JM (1993) Influence of some exogenous amino acids on the production of maize embryogenic callus and on endogenous amino acid content. Plant Cell Tissue Organ Cult 34:1–11

    Article  CAS  Google Scholar 

  • Dave A, Batra A (1995) Role of protein metabolism constituents in somatic embryo formation in cumin. Indian J Plant Physiol 38:25–27

    CAS  Google Scholar 

  • Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    Article  CAS  Google Scholar 

  • Goodpaster AM, Kennedy MA (2011) Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemometr Intell Lab Syst 109:162–170

    Article  CAS  Google Scholar 

  • Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  • Jeyaseelan M, Rao MV (2005) Biochemical studies of embryogenic and non-embryogenic callus of Cardiospermum halicacabum L. Indian J Exp Biol 43:555–560

    CAS  PubMed  Google Scholar 

  • Karp A (1991) On the current understanding of somaclonal variation. In: Miflin HF (ed) Oxford surveys of plant molecular and cell biology. Oxford University Press, New York, pp 1–58

    Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. doi:10.1038/nprot.2009.237

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Ban SH, Jeong SC (2007) Genetic discrimination between Catharanthus roseus cultivars by metabolic fingerprinting using 1 h NMR spectra of aromatic compounds. Biotechnol Bioprocess Eng 12:646–652

    Article  CAS  Google Scholar 

  • Lima MRM, Felgueiras ML, Gracxa G (2010) NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. J Exp Bot 61:4033–4042

    Article  CAS  PubMed  Google Scholar 

  • Loiseau J, Marche C, Deunff YL (1995) Effects of auxins, cytokinins, carbohydrates and amino acids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tissue Organ Cult 41:267–275

    Article  CAS  Google Scholar 

  • Lu C, Vasil IK, Ozias-Akins P (1982) Somatic embryogenesis in Zea mays L. Theor Appl Genet 62:109–112

    Article  CAS  PubMed  Google Scholar 

  • Malabadi RB, Staden JV (2011) Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cell Dev Biol Plant 41:181–186

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nieves N, Segura-Nieto M, Blanco MA, Sánchez M, González A, González JL, Castillo R (2003) Biochemical characterization of embryogenic and non-embryogenic calluses of sugarcane. In Vitro Cell Dev Biol Plant 39:343–345

    Article  CAS  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Goviden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Pareek LK (2005) Trends in plant tissue culture and biotechnology. Published by Agrobios, Jodhpur. ISBN 10: 8177540890 / ISBN 13: 9788177540895

  • Parella T (2004) Pulse Program Catalogue. In: NMRGuide4.0. Bruker BioSpin GmbH

  • Patel S, Jasrai YT, Adiyecha R (2011) Induction of somatic embryogenesis and genetic fidelity of endangered medicinal herb Curculigo orchioides Gaertn. Res Plant Biol 1:48–52

    Google Scholar 

  • Philips GC, Gamborg OL (2005) Plant cell, tissue and organ culture. Narosa, New Delhi, pp 91–93

    Google Scholar 

  • Quiroz FFR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (1997) Regeneration of plants via somatic embryogenesis from leafbase and leaf tip segments of Echinochloa colona. Plant Cell Tissue Organ Cult 47:119–125

    Article  Google Scholar 

  • Steward F, Mapes M, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereals and grass crops. J Plant Physiol 128:192–218

    Article  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212. doi:10.1016/j.ab.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, de Ropp JS, Viant MR, Woodruff DL, Yu P (2008) Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal Chim Acta 614:127–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) Metaboanalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–W133. doi:10.1093/nar/gks374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang SO, Kim SH, Kim Y, Kim HS, Chun YJ, Choi HK (2009) Metabolic discrimination of Catharanthus roseus calli according to their relative locations using (1)H-NMR and principal component analysis. Biosci Biotechnol Biochem 73:2032–2036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jack C. Comstock of USDA-ARS Sugarcane Field Station Canal Point, Florida for supplying the sugarcane materials used for initiating callus cultures that were used in this investigation as plant tissue materials for comparison. AB is supported by SC-INBRE (2 P20 GM103499), BS was supported by BlueCross BlueShield of South Carolina, and IM was supported by Biotechnology graduate program of Claflin University, South Carolina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Chowdhury.

Additional information

Editor: David Duncan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, I., Shrestha, B., Boroujerdi, A. et al. NMR-based metabolomics profile comparisons to distinguish between embryogenic and non-embryogenic callus tissue of sugarcane at the biochemical level. In Vitro Cell.Dev.Biol.-Plant 51, 340–349 (2015). https://doi.org/10.1007/s11627-015-9687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9687-8

Keywords

Navigation