Hyperosmolarity benefits cartilage regeneration by enhancing expression of chondrogenic markers and reducing inflammatory markers

Abstract

Application of hyperosmolarity can be a promising strategy to promote chondrogenic differentiation in adipose-derived mesenchymal stem cells (ADSCs). Growth factors may promote different signaling pathways in parallel that is why in this study we monitor undesired pathologic or unwanted side effects as well as chondroinductive impacts of hyperosmolarity in differentiating ADSCs. Quantified gene expression, immunocytochemistry, glycosaminoglycan deposition and angiogenic secretion assays performed along with immunoassay. We observed that hyperosmolarity pressure of 480 mOsm over-expressed cartilage specific markers at gene expression level in the extra cellular matrix. Meanwhile, hyperosmolarity of 480 mOsm diminished the expression of cartilage associated pathologic markers, i.e., inflammatory and angiogenic attributes. Certain dose of hyperosmolarity could benefit chondrogenesis in a dual way, first by increasing chondrogenic markers and second by lowering tissue mineralization and angiogenic potential. The chondroprotective potential of hyperosmolarity could have a promising benefit in cartilage cell therapy and tissue engineering.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

References

  1. Abolhassani M, Wertz X, Pooya M, Chaumet-Riffaud P, Guais A, Schwartz L (2008) Hyperosmolarity causes inflammation through the methylation of protein phosphatase 2A. Inflamm Res 57:419–429

    CAS  Article  Google Scholar 

  2. Ahmadyan S, Kabiri M, Hanaee-Ahvaz H, Farazmand A (2018) Osmolyte type and the osmolarity level affect chondrogenesis of mesenchymal stem cells. Appl Biochem Biotechnol 185:507–523

    CAS  Article  Google Scholar 

  3. Caron MM, van der Windt AE, Emans PJ, van Rhijn LW, Jahr H, Welting TJ (2013) Osmolarity determines the in vitro chondrogenic differentiation capacity of progenitor cells via nuclear factor of activated T-cells 5. Bone 53:94–102

    CAS  Article  Google Scholar 

  4. Chen S, Fu P, Cong R, Wu H, Pei M (2015) Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis 2:76–95

    Article  Google Scholar 

  5. Choi H, Chaiyamongkol W, Doolittle AC, Johnson ZI, Gogate SS, Schoepflin ZR, Shapiro IM, Risbud MV (2018) COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. J Biol Chem. https://doi.org/10.1074/jbc.RA117.001167

  6. Chung T-W, Kim E-Y, Choi H-J, Han CW, Jang SB, Kim K-J, Jin L, Koh YJ, Ha K-T (2019) 6′-Sialylgalactose inhibits vascular endothelial growth factor receptor 2-mediated angiogenesis. Exp Mol Med 51:1–13

    PubMed  PubMed Central  Google Scholar 

  7. Fahy N, Alini M, Stoddart MJ (2018) Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering. J Orthop Res 36:52–63

    PubMed  Google Scholar 

  8. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265

    Article  Google Scholar 

  9. Gentile LB, Piva B, Diaz BL (2011) Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE2. PLoS One 6:e25193

    CAS  Article  Google Scholar 

  10. Ghanavi P, Kabiri M, Doran MR (2012) The rationale for using microscopic units of a donor matrix in cartilage defect repair. Cell Tissue Res 347:643–648

    CAS  Article  Google Scholar 

  11. Herbelet S, De Vlieghere E, Gonçalves A, De Paepe B, Schmidt K, Nys E, Weynants L, Weis J, Van Peer G, Vandesompele J (2018) Localization and expression of nuclear factor of activated T-cells 5 in myoblasts exposed to pro-inflammatory cytokines or hyperosmolar stress and in biopsies from myositis patients. Front Physiol 9:126

    Article  Google Scholar 

  12. Hesari R, Keshvarinia M, Kabiri M, Rad I, Parivar K, Hoseinpoor H, Tavakoli R, Soleimani M, Kouhkan F, Zamanluee S (2020a) Comparative impact of platelet rich plasma and transforming growth factor-β on chondrogenic differentiation of human adipose derived stem cells. Bioimpacts 10:37–43

  13. Hesari R, Keshvarinia M, Kabiri M, Rad I, Parivar K, Hoseinpoor H, Tavakoli R et al (2020b) Combination of low intensity electromagnetic field with chondrogenic agent induces chondrogenesis in mesenchymal stem cells with minimal hypertrophic side effects. Electromagnetic Biology and Medicine 39:154–165

  14. Hsiao M-Y, Lin A-C, Liao W-H, Wang T-G, Hsu C-H, Chen W-S, Lin F-H (2019) Drug-loaded hyaluronic acid hydrogel as a sustained-release regimen with dual effects in early intervention of tendinopathy. Sci Rep 9:4784

    Article  Google Scholar 

  15. Jurgens WJ, Lu Z, Zandieh-Doulabi B, Kuik DJ, Ritt MJ, Helder MN (2012) Hyperosmolarity and hypoxia induce chondrogenesis of adipose-derived stem cells in a collagen type 2 hydrogel. J Tissue Eng Regen Med 6:570–578

    CAS  Article  Google Scholar 

  16. Kabiri M, Kul B, Lott WB, Futrega K, Ghanavi P, Upton Z, Doran MR (2012) 3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling. Biochem Biophys Res Commun 419:142–147

    CAS  Article  Google Scholar 

  17. Kanazawa T, Furumatsu T, Hachioji M, Oohashi T, Ninomiya Y, Ozaki T (2012) Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res 30:468–474

    CAS  Article  Google Scholar 

  18. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  Google Scholar 

  19. Lee CS, Burnsed OA, Raghuram V, Kalisvaart J, Boyan BD, Schwartz Z (2012) Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Res Ther 3:35

    CAS  Article  Google Scholar 

  20. Li D-Q, Chen Z, Song XJ, Luo L, Pflugfelder SC (2004) Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci 45:4302–4311

    Article  Google Scholar 

  21. Liu Z, Lei M, Jiang Y, Hao H, Chu L, Xu J, Luo M, Verfaillie CM, Zweier JL, Liu Z (2009) High glucose attenuates VEGF expression in rat multipotent adult progenitor cells in association with inhibition of JAK2/STAT3 signalling. J Cell Mol Med 13:3427–3436

    Article  Google Scholar 

  22. Matsuo H, Tamura M, Kabashima N, Serino R, Tokunaga M, Shibata T, Matsumoto M, Aijima M, Oikawa S, Anai H (2006) Prednisolone inhibits hyperosmolarity-induced expression of MCP-1 via NF-κB in peritoneal mesothelial cells. Kidney Int 69:736–746

    CAS  Article  Google Scholar 

  23. Miao-zhu D, Ping X, Yu-wei Y, Wei-jian Z, Shi-cong F, Da-you H (2004) The application of periodic acid Schiff (PAS) and Alcian blue (AB) stains in proteoglycan detection of articular cartilage [J]. Shanghai J Prev Med 9

  24. Pakfar A, Irani S, Hanaee-Ahvaz H (2017) Expressions of pathologic markers in PRP based chondrogenic differentiation of human adipose derived stem cells. Tissue Cell 49:122–130

    CAS  Article  Google Scholar 

  25. Reibman J, Meixler S, Lee TC, Gold LI, Cronstein BN, Haines KA, Kolasinski SL, Weissmann G (1991) Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. Proc Natl Acad Sci 88:6805–6809

    CAS  Article  Google Scholar 

  26. Ripmeester EG, Timur UT, Caron MM, Welting TJ (2018) Recent insights into the contribution of the changing hypertrophic chondrocyte phenotype in the development and progression of osteoarthritis. Front Bioeng Biotechnol 6:18

    Article  Google Scholar 

  27. Sampat SR, Dermksian MV, Oungoulian SR, Winchester RJ, Bulinski JC, Ateshian GA, Hung CT (2013) Applied osmotic loading for promoting development of engineered cartilage. J Biomech 46:2674–2681

    Article  Google Scholar 

  28. Sardana V, Burzynski J, Scuderi GR (2019) The influence of the irrigating solution on articular cartilage in arthroscopic surgery: a systematic review. J Orthop. https://doi.org/10.1016/j.jor.2019.02.018

  29. Schwartz L, Guais A, Pooya M, Abolhassani M (2009) Is inflammation a consequence of extracellular hyperosmolarity? J Inflamm 6:21

    Article  Google Scholar 

  30. Shafiee A, Kabiri M, Langroudi L, Soleimani M, Ai J (2016) Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair. J Biomed Mater Res A 104:600–610

    CAS  Article  Google Scholar 

  31. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    CAS  Article  Google Scholar 

  32. van deWindt A, Haak E, Das R, Kops N, Welting T, Caron M, vanTil N, Verhaar J, Weinans H, Jahr H (2010) Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated T-cells 5 in vitro. Arthritis Res Ther 12:1–27

    Google Scholar 

  33. Veltmann M, Hollborn M, Reichenbach A, Wiedemann P, Kohen L, Bringmann A (2016) Osmotic induction of angiogenic growth factor expression in human retinal pigment epithelial cells. PLoS One 11:e0147312

    Article  Google Scholar 

  34. Villanueva I, Bishop NL, Bryant SJ (2009) Medium osmolarity and pericellular matrix development improves chondrocyte survival when photoencapsulated in poly (ethylene glycol) hydrogels at low densities. Tissue Eng A 15:3037–3048

    CAS  Article  Google Scholar 

  35. Wright FL, Gamboni F, Moore EE, Nydam TL, Mitra S, Silliman CC, Banerjee A (2014) Hyperosmolarity invokes distinct anti-inflammatory mechanisms in pulmonary epithelial cells: evidence from signaling and transcription layers. PLoS One 9:e114129

    Article  Google Scholar 

  36. Xu X, Urban J, Tirlapur U, Cui Z (2010) Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthr Cartil 18:433–439

    CAS  Article  Google Scholar 

  37. Zhang Y, Chen S, Pei M (2016) Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality. Eur Cell Mater 31:59–78

    CAS  Article  Google Scholar 

  38. Zhou Y, Lv M, Li T, Zhang T, Duncan R, Wang L, Lu XL (2019) Spontaneous calcium signaling of cartilage cells: from spatiotemporal features to biophysical modeling. FASEB J. https://doi.org/10.1096/fj.201801460R

Download references

Funding

This work was partly funded by Stem Cell Technology Research Center and partly by Iranian Council for Stem Cell Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hana Hanaee-Ahvaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alinezhad-Bermi, S., Kabiri, M., Rad, I. et al. Hyperosmolarity benefits cartilage regeneration by enhancing expression of chondrogenic markers and reducing inflammatory markers. In Vitro Cell.Dev.Biol.-Animal (2021). https://doi.org/10.1007/s11626-020-00430-z

Download citation

Keywords

  • Chondrogenesis
  • Osteoarthritis (OA)
  • Joint
  • Cartilage
  • Hyperosmolarity
  • Angiogenesis and hypertrophy