Skip to main content
Log in

A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in regulating skeletal muscle myogenesis, a highly coordinated multistep biological process. However, most studies of lncRNAs have focused on humans, mouse, and other model animals. In this study, we identified a novel lncRNA, named lncKBTBD10, located in the nucleus and involved in the proliferation and differentiation of bovine skeletal muscle satellite cells. Prediction of coding potential and in vitro translation system illustrated that lncKBTBD10 has no encoding capability. With the process of myogenic differentiation, the expression of lncKBTBD10 gradually increased. To elucidate the functions of lncKBTBD10 during myogenesis, the gain/loss-of-function experiments were performed. Results showed that the proliferation and differentiation of bovine skeletal muscle satellite cells were all suppressed whether lncKBTBD10 was knocked down or over-expressed. Furthermore, we found that lncKBTBD10 may affect its proximity gene KBTBD10 to involve in myogenesis. Results indicated that the protein level of KBTBD10 was all diminished after induced differentiation for 2 d in differentiation medium (DM2) whether lncKBTBD10 was knocked down or over-expressed. It may support why the altering of lncKBTBD10 can suppress the proliferation and differentiation of bovine skeletal muscle satellite cells. In short, our study elucidated that lncKBTBD10 could induce a decrease of KBTBD10 protein and further to affect bovine skeletal muscle myogenesis. The novel identified lncKBTBD10 may provide a reference for lncRNAs involved in myogenesis of bovine skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspectives in Biology 4:441-441

  • Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    Article  CAS  PubMed  Google Scholar 

  • Billerey C, Boussaha M, Esquerre D, Rebours E, Djari A, Meersseman C, Klopp C, Gautheret D, Rocha D (2014) Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 15:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley PL, Andrew DJ (2001) Ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. Development 128:3001–3015

    CAS  PubMed  Google Scholar 

  • Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12:349–361

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2016) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 52:27–34

    Article  CAS  PubMed  Google Scholar 

  • Delpretti S, Montavon T, Leleu M, Joye E, Tzika A, Milinkovitch M, Duboule D (2013) Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding. Cell Rep 5:137–150

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, Glass DJ (2015) A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 34:181–191

    Article  CAS  PubMed  Google Scholar 

  • Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, Zuo B (2017) Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA (lncRNA-AK143003) that negatively regulates myoblast differentiation. Sci Rep 7:2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VA, Beggs AH (2014) Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 4:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT, Farrar MA, Hashem A, Manton ND, Muntoni F, North KN, Sandaradura SA, Nishino I, Hayashi YK, Sewry CA, Thompson EM, Yau KS, Brownstein CA, Yu TW, Allcock RJ, Davis MR, Wallgren-Pettersson C, Matsumoto N, Alkuraya FS, Laing NG, Beggs AH (2013) Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93:1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Yang F, Cao H, Liang Z (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29:3054–3064

    Article  CAS  PubMed  Google Scholar 

  • Jin CF, Li Y, Ding XB, Li X, Zhang LL, Liu XF, Guo H (2017) lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b. Gene 630:35–43

    Article  CAS  PubMed  Google Scholar 

  • Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52:101–112

    Article  CAS  PubMed  Google Scholar 

  • Koufariotis LT, Chen YP, Chamberlain A, Vander Jagt C, Hayes BJ (2015) A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS One 10:e0141225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XF, Ding XB, Li X, Jin CF, Yue YW, Li GP, Guo H (2017) An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 48:278–286

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Pajares V (2016) Long non-coding RNA regulation of gene expression during differentiation. Pflugers Arch 468:971–981

    Article  CAS  PubMed  Google Scholar 

  • Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Doring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S (2018) A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 10:102–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus P, Jaschinsky B, Schneider S, Neuhaus H, Wolter A, Ebelt H, Braun T (2006) Overexpression of Kelch domain containing-2 (mKlhdc2) inhibits differentiation and directed migration of C2C12 myoblasts. Exp Cell Res 312:3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Paxton CW, Cosgrove RA, Drozd AC, Wiggins EL, Woodhouse S, Watson RA, Spence HJ, Ozanne BW, Pell JM (2011) BTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts. Am J Physiol Cell Physiol 300:C1345–C1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Martinez A, Cenik BK, Bezprozvannaya S, Chen B, Bassel-Duby R, Liu N, Olson EN (2017) KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. Elife 6:e26439

  • Simionescu-Bankston A, Kumar A (2016) Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 94:853–866

    Article  CAS  Google Scholar 

  • Sun X, Li M, Sun Y, Cai H, Lan X, Huang Y, Bai Y, Qi X, Chen H (2016) The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochim Biophys Acta 1863:2835–2845

    Article  CAS  PubMed  Google Scholar 

  • Tahira AC, Kubrusly MS, Faria MF, Dazzani B, Fonseca RS, Maracaja-Coutinho V, Verjovski-Almeida S, Machado MC, Reis EM (2011) Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer 10:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Ji S, Li W, Yi B, Li H, Zhang H, Ma W (2017) LncRNA H19 promotes the differentiation of bovine skeletal muscle satellite cells by suppressing Sirt1/FoxO1. Cell Mol Biol Lett 22:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Jin C, Chen M, Zhang L, Liu X, Ma W, Guo H (2017) A lncRNA promotes myoblast proliferation by up-regulating GH1. In Vitro Cell Dev Biol Anim 53:699–705

    Article  CAS  PubMed  Google Scholar 

  • Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70:4117–4130

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M (2005) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem 280:30091–30099

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G, Zhang BT (2018) A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle 9:613:626 

  • Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, Lu L, Chen X, Chen F, Bao X, Zhu X, Wang L, Tang LY, Esteban MA, Wang CC, Jauch R, Sun H, Wang H (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, Chen X, Ma Y, Hu S, Wang Z, Hong A, Li Y, Sun Y, Wang X (2017) Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 8:14718

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No.31572380) and the Natural Science Foundation of Tianjin City (No.15JCZDJC33700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Liu or Hong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Li, X., Zhang, X. et al. A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis. In Vitro Cell.Dev.Biol.-Animal 55, 25–35 (2019). https://doi.org/10.1007/s11626-018-0306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-0306-y

Keywords

Navigation