Advertisement

Identification of Bactrian camel cell lines using genetic markers

  • Abdolreza Daneshvar Amoli
  • Seyed Abolhasan Shahzadeh Fazeli
  • Mehdi Aminafshar
  • Naser Emam Jomeh Kashan
  • Hamidreza Khaledi
Article

Abstract

Iranian Bactrian camel population is less than 100 animals. Iranian biological resource center produced more than 50 Bactrian camel fibroblast cell lines as a somatic cell bank for conservation animal genetic resources. We compared two type markers performance, including 14 random amplified polymorphic DNA (RAPDs) (dominant) and eight microsatellite (co-dominant) for cell line identification, individual identification and investigation genetic structure of these samples. Based on clarity, polymorphism, and repeatability, four RAPD primers were selected for future analysis. Four RAPD primers and eight microsatellite markers have generated a total of 21 fragments and 45 alleles, respectively. RAPD primers revealed fragment size between 150 to 2000 bp and gene diversity since 0.27 (IBRD) to 0.46 (GC10), with an average of 0.37. Microsatellite markers generated number of alleles per locus ranged from 3 to 11, with an average of 5.62 alleles. The observed heterozygosity ranged from 0.359 (IBRC02) to 0.978 (YWLL08), and expected heterozygosity ranged from 0.449 (IBRC02) to 0.879 (YWLL08). Bottleneck analysis and curve showed that Bactrian camel population did not experience a low diversity. RAPD profiles were especially suitable for investigation population genetics. All primers generated novel and polymorphic fragments. Briefly, our results show that a multiplex PCR based on these markers can still be valuable and suitable for authentication of cell lines, investigating gene diversity and conservation genetic resources in Bactrian camel, while new technologies are continuously developed.

Keywords

Bactrian camel Identification cell line RAPD Microsatellite 

Notes

Acknowledgements

The authors express their gratitude to Parvaneh Farzaneh for providing technical advice and access to required equipment and all colleagues in Human and Animal cell bank.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Atiyat RM (2015) The power of 28 microsatellite markers for parentage testing in sheep. Electron J Biotechnol 18(2):116–121.  https://doi.org/10.1016/j.ejbt.2015.01.001 CrossRefGoogle Scholar
  2. Almeida JL, Hill CR, Cole KD (2011) Authentication of African green monkey cell lines using human short tandem repeat markers. BMC Biotechnol 11(1):102.  https://doi.org/10.1186/1472-6750-11-102 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amoli AD, Aminafshar M, Fazeli SS, Emam N, Kashan J, Khaledi KJ (2017a) Isolation and characterization of microsatellite markers from endangered species (Camelus bactrianus). Iran J Appl Anim Sci 7(4):693–698Google Scholar
  4. Amoli AD, Mohebali N, Farzaneh P, Fazeli SAS, Nikfarjam L, Movasagh SA, Moradmand Z, Ganjibakhsh M, Nasimian A, Izadpanah M (2017b) Establishment and characterization of Caspian horse fibroblast cell bank in Iran. In Vitro Cell Dev Biol Anim 53(4):337–343.  https://doi.org/10.1007/s11626-016-0120-3 CrossRefGoogle Scholar
  5. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014PubMedPubMedCentralGoogle Scholar
  6. Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153(4):1989–2000PubMedPubMedCentralGoogle Scholar
  7. Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11(3):1043–1049CrossRefGoogle Scholar
  8. Dittmann MT, Runge U, Lang RA, Moser D, Galeffi C, Kreuzer M, Clauss M (2014) Methane emission by camelids. PLoS One 9(4):e94363CrossRefPubMedPubMedCentralGoogle Scholar
  9. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, Simerly CR, Rajkovic A, Miki T, Orwig KE, GP S (2012) Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2(3):440–446.  https://doi.org/10.1016/j.celrep.2012.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Finger A, Klank C (2010). Review molecular methods: blessing or curse? Relict Species, Springer: 309–320, DOI:  https://doi.org/10.1007/978-3-540-92160-8_18
  11. Freshney RI (2005) Culture of specific cell types. Wiley Online LibraryGoogle Scholar
  12. Gorji ZE, Khaledi KJ, Amoli AD, Ganjibakhsh M, Nasimian A, Gohari NS, Izadpanah M, Vakhshiteh F, Farghadan M, Moghanjoghi SM (2016) Establishment and characteristics of Iranian Sistani cattle fibroblast bank: a way to genetic conservation. Conserv Genet Resour 9(2):305–312CrossRefGoogle Scholar
  13. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106CrossRefPubMedGoogle Scholar
  14. Kuz’mina E E (2008) The prehistory of the silk road. University of Pennsylvania PressGoogle Scholar
  15. Li LF, Guan WJ, Li H, Zhou XZ, Bai XJ, Ma YH (2009) Establishment and characterization of a fibroblast cell line derived from Texel sheep. Biochem Cell Biol 87(3):485–492.  https://doi.org/10.1139/O09-005 CrossRefPubMedGoogle Scholar
  16. Mahrous KF, Ramadan HA, Abdel-Aziem SH, Abd-El Mordy M, Hemdan DM (2011) Genetic variations between camel breeds using microsatellite markers and RAPD techniques. J. Appl. Biosci 39:2626–2634Google Scholar
  17. Makkar HP, Viljoen GJ (2005) Applications of gene-based technologies for improving animal production and health in developing countries. Springer. doi:  https://doi.org/10.1007/b105256
  18. Mehta S, Mishra B, Sahani M (2006) Genetic differentiation of Indian camel (Camelus dromedarius) breeds using random oligonucleotide primers. Animal Genetic Resources/Resources génétiques animales/Recursos genéticos animales 39(77–88Google Scholar
  19. Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J (2012) PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet 50(9–10):670–672.  https://doi.org/10.1007/s10528-012-9509-1 CrossRefPubMedGoogle Scholar
  20. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590PubMedPubMedCentralGoogle Scholar
  21. Pavel AB, Vasile CI (2012) PyElph-a software tool for gel images analysis and phylogenetics. BMC Bioinformatics 13(1):9.  https://doi.org/10.1186/1471-2105-13-9 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  23. Roosen J, Fadlaoui A, Bertaglia M (2005) Economic evaluation for conservation of farm animal genetic resources. J Anim Breed Genet 122(4):217–228CrossRefPubMedGoogle Scholar
  24. Shahkarami S, Afraz F, Sayed MZ, Banabazi M, Asadzadeh N, Asadi N, Hemmati B, Ghanbari A, Razavi K (2012) Genetic diversity in Iranian Bactrian camels (Camelus batrianus) using, microsatellite markers. Mod Genet J 7(330):249–258Google Scholar
  25. Stacey G (2000) Cell contamination leads to inaccurate data: we must take action now. Nature 403(6768):356–356.  https://doi.org/10.1038/35000394 CrossRefPubMedGoogle Scholar
  26. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676.  https://doi.org/10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  27. Turlure C, Vandewoestijne S, Baguette M (2014) Conservation genetics of a threatened butterfly: comparison of allozymes, RAPDs and microsatellites. BMC Genet 15(1):114CrossRefPubMedPubMedCentralGoogle Scholar
  28. Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6(1):46CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wu H, Guang X, Al-Fageeh MB, Cao J, Pan S, Zhou H, Zhang L, Abutarboush MH, Xing Y, Xie Z (2014) Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun 5:5188.  https://doi.org/10.1038/ncomms6188 CrossRefPubMedGoogle Scholar
  30. Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1.31. Microsoft window-based freeware for population genetic analysis. University of Alberta, EdmontonGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Abdolreza Daneshvar Amoli
    • 1
  • Seyed Abolhasan Shahzadeh Fazeli
    • 2
    • 3
  • Mehdi Aminafshar
    • 1
  • Naser Emam Jomeh Kashan
    • 1
  • Hamidreza Khaledi
    • 4
  1. 1.Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC)ACECRTehranIran
  3. 3.Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
  4. 4.Department of Agriculture, Yadegar-e-Imam Khomeini (rah), Shahr-e- rey BranchIslamic Azad universityTehranIran

Personalised recommendations