miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN

  • Hongbing He
  • Mingcheng Cai
  • Jiaoyue Zhu
  • Wudian Xiao
  • Buwei Liu
  • Yu Shi
  • Xue Yang
  • Xiaohu Liang
  • Tianhao Zheng
  • Shenqiang Hu
  • Xianbo Jia
  • Shiyi Chen
  • Jie Wang
  • Yinghe Qin
  • Songjia Lai
Article

Abstract

Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3′ untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.

Keywords

miR-148a-3p Preadipocytes differentiation PTEN Rabbits 

Abbreviations

PPAR

peroxisome proliferator-activated receptor

C/EBP

CCAAT/enhancer binding protein

FABP4

fatty acid-binding protein4

PTEN

tensin homolog

PI3K

phosphatidylinositol 3-kinase

PIP 3

phosphatidylinositol-3, 4, 5-trisphosphate

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

Notes

Compliance with ethical standards

All experimental procedures using rabbits in our study were approved by the Institutional Animal Care and Use Committee of the College of Animal Science and Technology, Sichuan Agricultural University, China.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ambros V (2004) The functions of animal microRNAs. [J]. Nature 431(7006):350CrossRefPubMedGoogle Scholar
  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  3. Bayrak OF, Gulluoglu S, Aydemir E, Ture U, Acar H, Atalay B, Demir Z, Sevli S, Creighton CJ, Ittmann M (2013) MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. J Neuro-Oncol 115:143–151CrossRefGoogle Scholar
  4. Butterwith SC (1994) Molecular events in adipocyte development. Pharmacol Ther 61:399–411CrossRefPubMedGoogle Scholar
  5. Chen Z, Yang W, Meng Q, Xia Z (2016) Elevated microRNA-25 inhibits cell apoptosis in lung cancer by targeting RGS3. In Vitro Cell Dev Biol Anim 52:62–67CrossRefPubMedGoogle Scholar
  6. Cho YM, Kim TM, Kim DH, Dong HK, Jeong SW, Kwon OJ (2016) miR-148a is a downstream effector of X-box-binding protein 1 that silences Wnt10b during adipogenesis of 3T3-L1 cells. Exp Mol Med 48:e226CrossRefPubMedPubMedCentralGoogle Scholar
  7. Farrar C, Houser CR, Clarke S (2005) Activation of the PI3K/Akt signal transduction pathway and increased levels of insulin receptor in protein repair-deficient mice. Aging Cell 4:1CrossRefPubMedGoogle Scholar
  8. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fox KE, Fankell DM, Erickson PF, Majka SM, Jr CJ, Klemm DJ (2006) Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBP beta, or PPAR gamma 2. J Biol Chem 281:40341CrossRefPubMedGoogle Scholar
  10. Gagnon A, Chen CS, Sorisky A (1999) Activation of protein kinase B and induction of adipogenesis by insulin in 3T3-L1 preadipocytes: contribution of phosphoinositide-3,4,5-trisphosphate versus phosphoinositide-3,4-bisphosphate. Diabetes 48:691–698CrossRefPubMedGoogle Scholar
  11. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104:503–516CrossRefPubMedGoogle Scholar
  12. Hao Z, Yang W, Xu T, Chen L, Jiang W, He Q, Wang G, Chen D, Kang L, Hao T (2016) Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett 12:3208–3214CrossRefGoogle Scholar
  13. Holleville N, Mateos S, Bontoux M, Bollerot K, Monsoro-Burq A (2007) Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev Biol 304:860–874CrossRefPubMedGoogle Scholar
  14. Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, Purow B, Parsons S, Lawler S, Abounader R (2014) microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res 74:1541–1553CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lee SK, Lee JO, Kim JH, Kim SJ, You GY, Moon JW, Jung JH, Park SH, Uhm KO, Park JM (2011) Metformin sensitizes insulin signaling through AMPK-mediated PTEN down-regulation in preadipocyte 3T3-L1 cells. J Cell Biochem 112:1259CrossRefPubMedGoogle Scholar
  16. Leslie NR, Downes CP (2002) PTEN: the down side of PI 3-kinase signalling. Cell Signal 14:285–295CrossRefPubMedGoogle Scholar
  17. Li YX, Meng JX, Cai XZ et al (2007) Induced differentiation and signaling factor PTEN expression of 3T3-L1 adipocytes [J]. Nan Fang Yi Ke Da Xue Xue Bao 27(3):259–263PubMedGoogle Scholar
  18. Liffers ST, Munding JB, Vogt M, Kuhlmann JD, Verdoodt B, Nambiar S, Maghnouj A, Mirmohammadsadegh A, Hahn SA, Tannapfel A (2011) MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab Invest 91:1472–1479CrossRefPubMedGoogle Scholar
  19. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276:2348CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378CrossRefPubMedGoogle Scholar
  22. Nakashima N, Sharma PM, Imamura T, Bookstein R, Olefsky JM (2000) The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J Biol Chem 275:12889–12895CrossRefPubMedGoogle Scholar
  23. Ntambi JM, Kim YC (2000) Adipocyte differentiation and gene expression. J Nutr 130:3122–3126CrossRefGoogle Scholar
  24. Parsons R (2004) Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 15:171–176CrossRefPubMedGoogle Scholar
  25. Qingjuan L, Xiaojuan F, Wei Z, Chao W, Pengpeng K, Hongbo L, Sanbing Z, Jun H, Min Y, Shuxia L (2016) MiR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in lupus nephritis. Am J Physiol Cell Physiol 310:C470CrossRefPubMedGoogle Scholar
  26. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133:403–414CrossRefPubMedGoogle Scholar
  27. Shi C, Min Z, Tong M, Lei Y, Pang L, Ling C, Xu G, Xia C, Qin H, Ni Y (2015) miR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through Wnt signaling. Sci Rep 5:9930CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094CrossRefPubMedPubMedCentralGoogle Scholar
  29. Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A (2005) PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 280:22523CrossRefPubMedGoogle Scholar
  30. Tian L, Zheng F, Li Z, Wang H, Yuan H, Zhang X, Ma Z, Li X, Gao X, Wang B (2017) miR-148a-3p regulates adipocyte and osteoblast differentiation by targeting lysine-specific demethylase 6b. Gene 627:32–39CrossRefPubMedGoogle Scholar
  31. Tomiyama K, Nakata H, Sasa H, Arimura S, Nishio E, Watanabe Y (1995) Wortmannin, a specific phosphatidylinositol 3-kinase inhibitor, inhibits adipocytic differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 212:263–269CrossRefPubMedGoogle Scholar
  32. Yuan K, Lian Z, Sun B, Clayton MM, Ng IOL, Feitelson MA (2011) Abstract C16: miR-148a regulates the expression of PTEN in hepatitis B associated hepatocellular carcinoma. Cancer Res 71:C16–C16CrossRefGoogle Scholar
  33. Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425:88CrossRefPubMedGoogle Scholar
  34. Zhang H, Wang Y, Xu T, Li C, Wu J, He Q, Wang G, Ding C, Liu K, Tang H (2016) Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett 12:3208–3214CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang WR, Zhang HN, Wang YM, Dai Y, Liu XF, Li X, Ding XB, Guo H (2017) miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. In Vitro Cell Dev Biol Anim 53:1–7CrossRefGoogle Scholar
  36. Zhang X, Wang H, Zhang S, Song J, Zhang Y, Wei X, Feng Z (2012) MiR-134 functions as a regulator of cell proliferation, apoptosis, and migration involving lung septation. In Vitro Cell Dev Biol Anim 48:131–136CrossRefPubMedGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Hongbing He
    • 1
  • Mingcheng Cai
    • 1
  • Jiaoyue Zhu
    • 2
  • Wudian Xiao
    • 1
  • Buwei Liu
    • 1
  • Yu Shi
    • 1
  • Xue Yang
    • 1
    • 3
  • Xiaohu Liang
    • 1
  • Tianhao Zheng
    • 1
  • Shenqiang Hu
    • 1
  • Xianbo Jia
    • 1
  • Shiyi Chen
    • 1
  • Jie Wang
    • 1
  • Yinghe Qin
    • 2
  • Songjia Lai
    • 1
  1. 1.Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversitySichuanChina
  2. 2.College of Animal Science and TechnologyChina Agricultural UniversityHaidian DistrictPeople’s Republic of China
  3. 3.Chendu Academy of Agriculture and Forestry SciencesSichuanChina

Personalised recommendations