Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking

  • Clautina R. M. Costa
  • Matheus L. T. Feitosa
  • Dayseanny O. Bezerra
  • Yulla K. P. Carvalho
  • Rodrigo F. G. Olivindo
  • Pablo B. Fernando
  • Gustavo C. Silva
  • Mirna L. G. Silva
  • Carlos E. Ambrósio
  • Airton M. Conde Júnior
  • Napoleão M. Argolo Neto
  • Laís M. Costa Silva
  • Maria A. M. Carvalho
Article
  • 296 Downloads

Abstract

Stem cells derived from adipose tissue (ADSC) have been used in cell therapy as an alternative to treat chronic and degenerative diseases. Using biomedical and image trials to track the cells when infused in the target tissue is essential to control cell migration and adhesion. The objective of the present study was to label and assess the adhesion of goat adipose tissue-derived stem cells (g-ADSC) after cell infusion in animal models by tracking luminescent intracytoplasmatic nanocrystals. The cells were labeled by using Qdots. The g-ADSCs infused with nanocrystal were prepared either fresh or fixed and further visualized under a fluorescence microscope. The labeled cells were infused in the goat mammary glands and mouse testicles and kidneys via tail vein injection. Thirty days after cell infusion, biopsy was carried out for analyses. The g-ADSC cultures were presented with high cellularity and fibroblast morphology, even after infusion of the nanocrystals. It was possible, by processing in paraffin and under fluorescence microscopy, demonstrating the success of the labeling in the long term. Freezing mammary gland biopsies in liquid NO2 did not alter the quality of labeling with Qdots. Therefore, g-ADSCs can be labeled with intracytoplasmatic nanocrystals (Qdots) enabling their in vitro and ex vivo tracking.

Keywords

Qdots Adipose-derived stem cells Cell tracking Stem cells 

Notes

Acknowledgements

We are thankful to the National Scientific and Technological Development Council-CNPq (Process: 552400/11-4; 311 684/2012-2) for their financial support. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Federal Univesity of Piauí (Permit Number 037/2012).

References

  1. Akins EJ, Dubey P (2008) Noinvasing imaging off cell-mediated therapy for treatment of cancer. J Nucl Med 49:180–195CrossRefGoogle Scholar
  2. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868CrossRefPubMedGoogle Scholar
  3. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45:115–120CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent QDs for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefPubMedGoogle Scholar
  5. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613CrossRefPubMedGoogle Scholar
  6. Dedecker P, Schryver FC, Hofkens J (2013) Fluorescent proteins: shine on, you crazy diamond. J Am Chem Soc 135:2387–2402CrossRefPubMedGoogle Scholar
  7. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35CrossRefPubMedGoogle Scholar
  8. Iafolla MA, Mazumder M, Sardana V, Velauthapillai T, Pannu K, McMillen DR (2008) Dark proteins: effect of inclusion body formation on quantification of protein expression. Proteins 72:1233–1242CrossRefPubMedGoogle Scholar
  9. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216CrossRefPubMedGoogle Scholar
  10. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423CrossRefPubMedGoogle Scholar
  11. Kaur S, Singhal B (2012) When nano meets stem: the impact of nanotechnology in stem cell biology. J Biosci Bioeng 113:1–4CrossRefPubMedGoogle Scholar
  12. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:548–556CrossRefGoogle Scholar
  13. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49:133–142CrossRefPubMedGoogle Scholar
  14. Lin G, Garcia M, Ning H, Banie L, Guo Y, Lue TF, Lin CS (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1053–1064CrossRefPubMedPubMedCentralGoogle Scholar
  15. Moreau MJ, Morin I, Schaeffer PM (2010) Quantitative determination of protein stability and ligand binding using a green fluorescent protein reporter system. Mol BioSyst 6:1285–1292CrossRefPubMedGoogle Scholar
  16. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and pro-genitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118:121–128CrossRefGoogle Scholar
  17. Muccioli M, Pate M, Omosebi O, Benecia F (2011) Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies. J Vis Exp 52:1–5Google Scholar
  18. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13:77–81CrossRefPubMedGoogle Scholar
  19. Noh YW, Lim YT, Chung BH (2008) Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J 22:3908–3918CrossRefPubMedGoogle Scholar
  20. Ocarino NM, Bozzi A, Pereira RD, Breyner NM, Silva VL, Castanheira P, Goes AM, Serakides R (2008) Behavior of mesenchymal stem cells stained with 4′, 6-diamidino-2-phenylindole dihydrochloride (DAPI) in osteogenic and non osteogenic cultures. Biocell 32:175–183PubMedGoogle Scholar
  21. Oliveira DM, Almeida BO, Marti LC, Sibov TT, Pavon LF, Malheiros DMAC, Campos AH (2009) Labeling of human mesenchymal stem cells with QDs allows tracking of transplanted cells engrafted in infarcted pig hearts. Einstein 7:284–289Google Scholar
  22. Oliveira PPG, Carvalho AM, Yamada ALM, Maia L, Freitas NPP, Watanabe MJ, Landim-Alvarenga FC, Alves ALG (2014) Avaliação da migração das células progenitoras após terapia da tendinite equina Arq. Bras Med Vet Zootec 66:1033–1038CrossRefGoogle Scholar
  23. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Nati Acad Sci USA 98:11450–11455CrossRefGoogle Scholar
  24. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3:165–174CrossRefPubMedGoogle Scholar
  25. Ren Y, Wu H, Zhou J, Wen J, Jin M, Cang M, Guo X, Wang Q, Liu D, Ma Y (2012) Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res Vet Sci 93:404–411CrossRefPubMedGoogle Scholar
  26. Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with QDs for quantitative in vivo three-dimensional fluorescence analysis. Stem Cell 25:2128–2138CrossRefGoogle Scholar
  27. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  28. Tognoli GK, Olsson DC, Martins DB, Santos Júnior EB, Salbego FZ, Oliveira GK, Braga FVA, Raiser AG, Dezengrini R, Cruz FS, Castro MB, Rosa MC, Carregaro AB, Pippi NL (2009) Transplante autólogo de células mononucleares da medula óssea em úlcera de córnea experimental em cães. Cienc Rural 39:148–155CrossRefGoogle Scholar
  29. Weir C, Morel-Kopp MC, Gill A, Tinworth K, Ladd L, Hunvor SN, Ward C (2008) Mesenchymal stem cells: isolation, characterization and in vivo fluorescent dye tracking. Heart Lung Circ 17:395–403CrossRefPubMedGoogle Scholar
  30. Zimmerlin L (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77A:22–30Google Scholar
  31. Zuk PA, Zhu M, Ashjian P, Ugart DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cell. Mol Biol Cell 13:4279–4295CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2016

Authors and Affiliations

  • Clautina R. M. Costa
    • 1
  • Matheus L. T. Feitosa
    • 1
  • Dayseanny O. Bezerra
    • 1
  • Yulla K. P. Carvalho
    • 1
  • Rodrigo F. G. Olivindo
    • 1
  • Pablo B. Fernando
    • 1
  • Gustavo C. Silva
    • 1
  • Mirna L. G. Silva
    • 1
  • Carlos E. Ambrósio
    • 2
  • Airton M. Conde Júnior
    • 3
  • Napoleão M. Argolo Neto
    • 1
  • Laís M. Costa Silva
    • 1
  • Maria A. M. Carvalho
    • 1
  1. 1.Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt)Federal University of Piauí (UFPI)TeresinaBrazil
  2. 2.Veterinary Medicine Department, Faculty of Animal Science and Food Engineering (FZEA)University of São Paulo (USP)São PauloBrazil
  3. 3.Morphology DepartmentFederal University of PiauíTeresinaBrazil

Personalised recommendations