Skip to main content

A transdisciplinary typology of change identifies new categories of adaptations and forms of co-adaptation in coupled human and natural systems

Abstract

Adaptation in human and natural systems has received growing attention in sustainability scholarship. Co-adaptation, when coupled human and natural systems (CHANSs) adapt in congruence, is receiving much less attention. Not only are various forms of co-adaptation difficult to disentangle, adaptations are also conceptualized very differently by scholars of human and natural systems. One aspect of adaptation that scholars agree on, however, is that it is first and foremost a change. We offer a new transdisciplinary typology of the four most basic types of change, internally and externally driven non-structural and structural changes, that bridges perspectives in the natural and social sciences and through which we introduce new categories of adaptations and forms of co-adaptation in CHANSs. We first describe the typology’s foundations and its four types of change. We then organize forms of adaptation in human and natural systems according to the types of change they exhibit to identify new categories of adaptations and forms of co-adaptation. Finally, we illustrate the application of the new categories and forms in a real-world CHANS—the privately managed Northwoods in the Upper Midwest, USA. This new typology paves the way for robust and cross-disciplinary research on CHANSs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. The term “adjustment” is also used instead of “change” in defining adaptation (e.g., Matthews 2018; Smit et al. 2001), which is a change that improves suitability.

  2. Based on data in Butler (2008, pg. 52) for Michigan (8.96 mill ac), Minnesota (5.39 mill ac), and Wisconsin (9.08 mill ac).

References

  • Allaby M (2014a) Acclimatization. In: A dictionary of zoology, 4th edn. Oxford University Press

  • Allaby M (2014b) Natural selection. In: A dictionary of zoology, 4th edn. Oxford University Press

  • Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN, Zenes N (2018) Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561:538–541

    CAS  Article  Google Scholar 

  • Angilletta MJ Jr, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS (2006) Coadaptation: a unifying principle in evolutionary thermal biology. Physiol Biochem Zool 79(2):282–294. https://doi.org/10.1086/499990

    Article  Google Scholar 

  • Aquilue R, Filotas L, Craven D, Fortin E, Messier C, Brotons I (2020) Evaluating forest resilience to global threats using functional response traits and network properties. Ecol Appl 30(5):14

    Article  Google Scholar 

  • Ashby WR (1956) An introduction to cybernetics. Chapman & Hall

    Book  Google Scholar 

  • Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cursos Congr Univ Santiago De Compostela 1(2):83–99

    Google Scholar 

  • Bottero A, D’Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, Asherin LA (2017) Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 54(6):1605–1614. https://doi.org/10.1111/1365-2664.12847

    Article  Google Scholar 

  • Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16(2):106–113. https://doi.org/10.1016/j.tics.2011.12.010

    Article  Google Scholar 

  • Bunge M (1974) The concept of social structure. In: Leinfellner W, Köhler E (eds) Developments in the methodology of social science, vol 6. Springer, pp 175–215

    Chapter  Google Scholar 

  • Burton I (1996) The growth of adaptation capacity: practice and policy. In: Smith JB, Bhatti N, Menzhulin GV, Benioff R, Campos M, Jallow B, Rijsberman F, Budyko MI, Dixon RK (eds) Adapting to climate change. Springer, New York, pp 55–67

    Chapter  Google Scholar 

  • Burton I, Diringer E, Smith J (2006) Adaptation to climate change: international policy options. Pew Center on Global Climate Change

    Google Scholar 

  • Butler BJ (2008) Family forest owners of the United States, 2006: a technical document supporting the forest service 2010 RPA assessment (Gen. Tech. Rep. NRS-27; p. 72). U.S. Department of Agriculture, Forest Service, Northern Research Station

  • Butler BJ, Ma Z (2011) Family forest owner trends in the Northern United States. North J Appl for 28(1):13–18. https://doi.org/10.1093/njaf/28.1.13

    Article  Google Scholar 

  • Butterfield BJ, Palmquist EC, Hultine KR (2020) Regional coordination between riparian dependence and atmospheric demand in willows (Salix L.) of western North America. Divers Distrib. https://doi.org/10.1111/ddi.13192

    Article  Google Scholar 

  • D’Amato AW, Bradford JB, Fraver S, Palik BJ (2013) Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl 23(8):1735–1742. https://doi.org/10.1890/13-0677.1

    Article  Google Scholar 

  • Dobzhansky T (1956) What is an adaptive trait? Am Nat 90(855):337–347. https://doi.org/10.1086/281944

    Article  Google Scholar 

  • Dobzhansky T, Pavlovsky O (1958) Interracial Hybridization and breakdown of Coadapted Gene Complexes in Drosophila Paulistorum and Drosophila Willistoni. Proc Natl Acad Sci 44(6):622–629. https://doi.org/10.1073/pnas.44.6.622

    CAS  Article  Google Scholar 

  • Duveneck MJ, Scheller RM (2016) Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landscape Ecol 31(3):669–686. https://doi.org/10.1007/s10980-015-0273-6

    Article  Google Scholar 

  • Ellis EC, Kaplan JO, Fuller DQ, Vavrus S, Klein Goldewijk K, Verburg PH (2013) Used planet: a global history. Proc Natl Acad Sci 110(20):7978–7985. https://doi.org/10.1073/pnas.1217241110

    Article  Google Scholar 

  • Erickson DL, Ryan RL, De Young R (2002) Woodlots in the rural landscape: Landowner motivations and management attitudes in a Michigan (USA) case study. Landsc Urban Plan 58(2–4):101–112. https://doi.org/10.1016/S0169-2046(01)00213-4

    Article  Google Scholar 

  • Fankhauser S, Smith JB, Tol RSJ (1999) Weathering climate change: some simple rules to guide adaptation decisions. Ecol Econ 30(1):67–78. https://doi.org/10.1016/S0921-8009(98)00117-7

    Article  Google Scholar 

  • Fedele G, Donatti CI, Harvey CA, Hannah L, Hole DG (2019) Transformative adaptation to climate change for sustainable social-ecological systems. Environ Sci Policy 101:116–125. https://doi.org/10.1016/j.envsci.2019.07.001

    Article  Google Scholar 

  • Fischer AP (2019) Adapting and coping with climate change in temperate forests. Glob Environ Chang 54:160–171. https://doi.org/10.1016/j.gloenvcha.2018.10.011

    Article  Google Scholar 

  • Flathers KN, Kolb TE, Bradford JB, Waring KM, Moser WK (2016) Long-term thinning alters ponderosa pine reproduction in northern Arizona. For Ecol Manage 374:154–165. https://doi.org/10.1016/j.foreco.2016.04.053

    Article  Google Scholar 

  • Füssel H-M (2007) Adaptation planning for climate change: concepts, assessment approaches, and key lessons. Sustain Sci 2(2):265–275. https://doi.org/10.1007/s11625-007-0032-y

    Article  Google Scholar 

  • Gallopín GC (2006) Linkages between vulnerability, resilience, and adaptive capacity. Glob Environ Chang 16(3):293–303. https://doi.org/10.1016/j.gloenvcha.2006.02.004

    Article  Google Scholar 

  • Gittleman JL (2019) Adaptation. In Encyclopædia Britannica Online. https://www.britannica.com/science/adaptation-biology-and-physiology

  • Gómez-Mendoza L, Galicia L (2010) Temperate forests and climate change in Mexico: from modelling to adaptation strategies. In: Simard S (ed) Climate change and variability. IntechOpen Limited

    Google Scholar 

  • Gunderson LH, Holling CS (eds) (2002) Panarchy: understanding transformations in human and natural systems. Island Press

    Google Scholar 

  • Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion: species diversity reduces disease risk. Ecol Lett 14(11):1108–1116. https://doi.org/10.1111/j.1461-0248.2011.01679.x

    Article  Google Scholar 

  • Handler S, Duveneck MJ, Iverson L, Peters E, Scheller RM, Wythers KR, Brandt L, Butler P, Janowiak M, Shannon PD, Swanston C, Barrett K, Kolka R, McQuiston C, Palik B, Reich PB, Turner C, White M, Adams C, Ziel R (2014) Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project (NRS-GTR-133; p. NRS-GTR-133). U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi.org/10.2737/NRS-GTR-133

  • Handler S, Duveneck MJ, Iverson L, Peters E, Scheller RM, Wythers KR, Brandt L, Butler P, Janowiak M, Shannon PD, Swanston C, Eagle AC, Cohen JG, Corner R, Reich PB, Baker T, Chhin S, Clark E, Fehringer D, Ziel R (2014) Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project (NRS-GTR-129; p. NRS-GTR-129). U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi.org/10.2737/NRS-GTR-129

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3(3):203–207. https://doi.org/10.1038/nclimate1687

    Article  Google Scholar 

  • Hayhoe K et al (2010) Regional climate change projections for Chicago and the US Great Lakes. J Great Lakes Res 36:7–21

    Article  Google Scholar 

  • Hine R (2019a) Adaptation. In: A dictionary of biology, 8th edn. Oxford University Press

  • Hine R (2019b) Natural selection. In: A dictionary of biology, 8th edn. Oxford University Press

  • Hirsch Hadorn G, Hoffmann-Riem H, Biber-Klemm S, Grossenbacher-Mansuy W, Joye D, Pohl C, Wiesmann U, Zemp E (eds) (2008) Handbook of transdisciplinary research. Springer

    Google Scholar 

  • Holland JH (2012) Signals and boundaries. The MIT Press

    Book  Google Scholar 

  • Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4(5):390–405. https://doi.org/10.1007/s10021-001-0101-5

    Article  Google Scholar 

  • Hood SM, Baker S, Sala A (2016) Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol Appl 26(7):1984–2000. https://doi.org/10.1002/eap.1363

    Article  Google Scholar 

  • Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566–567:463–467. https://doi.org/10.1016/j.scitotenv.2016.05.108

    CAS  Article  Google Scholar 

  • IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES

  • Irland LC, Adams D, Alig R, Betz CJ, Chen C-C, Hutchins M, McCARL BA, Skog K, Sohngen BL (2001) Assessing socioeconomic impacts of climate change on US forests, wood-product markets, and forest recreation. Bioscience 51(9):753. https://doi.org/10.1641/0006-3568(2001)051[0753:ASIOCC]2.0.CO;2

    Article  Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10(9):835–848. https://doi.org/10.1111/j.1461-0248.2007.01073.x

    Article  Google Scholar 

  • Janowiak MK, Iverson LR, Mladenoff DJ, Peters E, Wythers KR, Xi W, Brandt LA, Butler PR, Handler SD, Shannon PD, Swanston C, Parker LR, Amman AJ, Bogaczyk B, Handler C, Lesch E, Reich PB, Matthews S, Peters M, Ziel R (2014) Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project (NRS-GTR-136; p. NRS-GTR-136). U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi.org/10.2737/NRS-GTR-136

  • Jönsson MT, Fraver S, Jonsson BG (2009) Forest history and the development of old-growth characteristics in fragmented boreal forests. J Veg Sci 20(1):91–106. https://doi.org/10.1111/j.1654-1103.2009.05394.x

    Article  Google Scholar 

  • Kappeler PM (2019) A framework for studying social complexity. Behav Ecol Sociobiol 73(1):13. https://doi.org/10.1007/s00265-018-2601-8

    Article  Google Scholar 

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann for Sci 72(2):145–167. https://doi.org/10.1007/s13595-014-0446-5

    Article  Google Scholar 

  • Kerhoulas LP, Kolb TE, Hurteau MD, Koch GW (2013) Managing climate change adaptation in forests: a case study from the U.S. Southwest. J Appl Ecol 50(6):1311–1320. https://doi.org/10.1111/1365-2664.12139

    Article  Google Scholar 

  • King RC, Mulligan PK, Stansfield WD (2013) Mutation. In: A dictionary of genetics, 8th ed. Oxford University Press

  • Klir GJ (2001a) Conceptual frameworks. In: Facets of systems science. Springer US, pp 55–87

  • Klir, G. J. (2001b). More about systems. In: Facets of systems science. Springer US, pp 9–30

  • Koch JL (2010) Beech bark disease: the oldest “new” threat to American beech in the United States. Outlooks Pest Man 21(2):64–68. https://doi.org/10.1564/21apr03

    Article  Google Scholar 

  • Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2(4):961–982. https://doi.org/10.3390/f2040961

    Article  Google Scholar 

  • Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):10

    Article  Google Scholar 

  • Leonard TC (2009) Origins of the myth of social Darwinism: the ambiguous legacy of Richard Hofstadter’s Social Darwinism in American Thought. J Econ Behav Organ 71(1):37–51. https://doi.org/10.1016/j.jebo.2007.11.004

    Article  Google Scholar 

  • Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1(5):431–436. https://doi.org/10.1007/s100219900037

    Article  Google Scholar 

  • Levin SA (2010) Complex adaptive systems and the challenge of sustainability. In: Levin SA, Clark WC (eds) Toward a science of sustainability. John F. Kennedy School of Government, Harvard University, pp 129–134

    Google Scholar 

  • MacLeod M (2018) What makes interdisciplinarity difficult? Some consequences of domain specificity in interdisciplinary practice. Synthese 195(2):697–720. https://doi.org/10.1007/s11229-016-1236-4

    Article  Google Scholar 

  • Maracchi G, Sirotenko O, Bindi M (2005) Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. In: Salinger MJ, Siva Kumar MVK, Motha RP (eds) Increasing climate variability and change: reducing the vulnerability of agriculture and forestry. Springer, pp 117–136

    Chapter  Google Scholar 

  • Martens P, McEvoy D, Ting Chang C (2016) Climate change: responding to a major challenge for sustainable development. In: Heinrichs H, Martens P, Michelsen G, Wiek A (eds) Sustainability science. Springer Netherlands, pp 303–310

    Chapter  Google Scholar 

  • Martin JL, Lee M (2015) Social structure. In: International encyclopedia of the social & behavioral sciences. Elsevier, pp 713–718. https://doi.org/10.1016/B978-0-08-097086-8.32154-7

  • Matthews JBR (2018) Annex I: Glossary. In: Masson-Delmotte V, Zhai P, Portner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Pean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • McCullough DG, Heyd RL, O’Brien JG (2005) biology and management of beech bark disease: Michigan’s newest exotic forest pest. Extension Bulletin, E-2746, 12

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manage 218(1–3):1–24. https://doi.org/10.1016/j.foreco.2005.08.034

    Article  Google Scholar 

  • Moore M-L, Tjornbo O, Enfors E, Knapp C, Hodbod J, Baggio JA, Norström A, Olsson P, Biggs D (2014) Studying the complexity of change: toward an analytical framework for understanding deliberate social-ecological transformations. Ecology Society 19(4):art54. https://doi.org/10.5751/ES-06966-190454

    Article  Google Scholar 

  • Nadkarni NM, McIntosh ACS, Cushing JB (2008) A framework to categorize forest structure concepts. For Ecol Manage 256(5):872–882. https://doi.org/10.1016/j.foreco.2008.05.021

    Article  Google Scholar 

  • Pagel M (2002b) Natural selection. In: Encyclopedia of evolution. Oxford University Press

  • Pagel M (2002a) Mutation. In: Encyclopedia of evolution. Oxford University Press

  • Park C, Allaby M (2017a) Acclimation. In: A dictionary of environment and conservation, 3rd edn. Oxford University Press

  • Park C, Allaby M (2017b) Natural selection. In: A dictionary of environment and conservation, 3rd edn. Oxford University Press

  • Park A, Puettmann K, Wilson E, Messier C, Kames S, Dhar A (2014) Can boreal and temperate forest management be adapted to the uncertainties of 21st century climate change? Crit Rev Plant Sci 33(4):251–285. https://doi.org/10.1080/07352689.2014.858956

    Article  Google Scholar 

  • Pelling M, O’Brien K, Matyas D (2015) Adaptation and transformation. Clim Change 133(1):113–127. https://doi.org/10.1007/s10584-014-1303-0

    Article  Google Scholar 

  • Pickett STA (1976) Succession: an evolutionary interpretation. Am Nat 110(971):107–119. https://doi.org/10.1086/283051

    Article  Google Scholar 

  • Poland TM, McCullough DG (2006) Emerald Ash Borer: invasion of the urban forest and the threat to North America’s ash resource. J Forestry 104(3):118–124

    Google Scholar 

  • Potter-Witter K (2005) A cross-sectional analysis of Michigan nonindustrial private forest landowners. North J Appl for 22(2):132–138. https://doi.org/10.1093/njaf/22.2.132

    Article  Google Scholar 

  • Prakash S, Lewontin RC (1968) A molecular approach to the study of genic heterozygosity in natural populations, III. direct evidence of coadaptation in gene arrangements of Drosophila. Zoology 59:398–405

    CAS  Google Scholar 

  • Pugh SA, Hansen MH, Pedersen LD, Heym DC, Butler BJ, Crocker SJ, Meneguzzo D, Perry CH, Haugen DE, Woodall CW, Jepsen E (2009) Michigan’s Forests 2004 (Resource Bulletin NRS-34). U.S. Department of Agriculture, Forest Service

  • Rahman HMT, Hickey GM (2019) What does autonomous adaptation to climate change have to teach public policy and planning about avoiding the risks of maladaptation in Bangladesh? Front Environ Sci 7:2. https://doi.org/10.3389/fenvs.2019.00002

    Article  Google Scholar 

  • Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG (2018) Abrupt change in ecological systems: inference and diagnosis. Trends Ecol Evol 33(7):513–526. https://doi.org/10.1016/j.tree.2018.04.013

    Article  Google Scholar 

  • Retzlaff M, Keane R, Affleck D, Hood S (2018) Growth response of whitebark pine (Pinus albicaulis Engelm) regeneration to thinning and prescribed burn treatments. Forests 9(6):311. https://doi.org/10.3390/f9060311

    Article  Google Scholar 

  • Rittenhouse CD, Rissman AR (2015) Changes in winter conditions impact forest management in north temperate forests. J Environ Manage 149:157–167. https://doi.org/10.1016/j.jenvman.2014.10.010

    Article  Google Scholar 

  • Ryan RM, Deci EL (2000) Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol 25(1):54–67. https://doi.org/10.1006/ceps.1999.1020

    CAS  Article  Google Scholar 

  • San Miguel M, Johnson JH, Kertesz J, Kaski K, Díaz-Guilera A, MacKay RS, Loreto V, Érdi P, Helbing D (2012) Challenges in complex systems science. Eur Phys J Special Topics 214(1):245–271. https://doi.org/10.1140/epjst/e2012-01694-y

    Article  Google Scholar 

  • Savit R, Riolo M, Riolo R (2013) Co-adaptation and the emergence of structure. PLoS ONE 8(9):e71828. https://doi.org/10.1371/journal.pone.0071828

    CAS  Article  Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol Evol 18(12):648–656. https://doi.org/10.1016/j.tree.2003.09.002

    Article  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Chang 7(6):395–402. https://doi.org/10.1038/nclimate3303

    Article  Google Scholar 

  • Smit B, Burton I, Klein RJT, Street R (1999) The science of adaptation: a framework for assessment. Mitig Adapt Strat Glob Change 4(3–4):199–213

    Article  Google Scholar 

  • Smit B, Burton I, Klein RJT, Wandel J (2000) An anatomy of adaptation to climate change and variability. Clim Change 45:223–251

    Article  Google Scholar 

  • Smit B, Pilifosova O, Burton I, Challenger B, Huq S, Klein RJT, Yohe G, Adger N, Downing T, Harvey E, Kane S, Parry M, Skinner M, Smith J (2001) Adaptation to climate change in the context of sustainable development and equity. In: Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, pp 877–912

  • Somero GN (2010) The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers.” J Exp Biol 213(6):912–920. https://doi.org/10.1242/jeb.037473

    CAS  Article  Google Scholar 

  • Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ (2018) Trajectories of the earth system in the Anthropocene. Proc Natl Acad Sci 115(33):8252–8259. https://doi.org/10.1073/pnas.1810141115

    CAS  Article  Google Scholar 

  • Sullivan TP, Sullivan DS (2017) Old-growth characteristics 20 years after thinning and repeated fertilization of lodgepole pine forest: Tree growth, structural attributes, and red-backed voles. For Ecol Manage 391:207–220. https://doi.org/10.1016/j.foreco.2017.02.021

    Article  Google Scholar 

  • Swanston C, Brandt LA, Janowiak MK, Handler SD, Butler-Leopold P, Iverson L, Thompson FR III, Ontl TA, Shannon PD (2018) Vulnerability of forests of the Midwest and Northeast United States to climate change. Clim Change 146(1–2):103–116. https://doi.org/10.1007/s10584-017-2065-2

    Article  Google Scholar 

  • Thom D, Taylor AR, Seidl R, Thuiller W, Wang J, Robideau M, Keeton WS (2020) Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.143070

    Article  Google Scholar 

  • Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50(1):571–599. https://doi.org/10.1146/annurev.arplant.50.1.571

    CAS  Article  Google Scholar 

  • UNESCO (1998) Transdisciplinarity: stimulating synergies, integrating knowledge, p 80. Division of Philosophy and Ethics

  • Vernon MJ, Sherriff RL, van Mantgem P, Kane JM (2018) Thinning, tree-growth, and resistance to multi-year drought in a mixed-conifer forest of northern California. For Ecol Manage 422:190–198. https://doi.org/10.1016/j.foreco.2018.03.043

    Article  Google Scholar 

  • Walker BH, Holling CS, Carpenter SR, Kinzig AP (2004) Resilience, adaptability and transformability in social-ecological systems. Ecology Society 9(2):art5. https://doi.org/10.5751/ES-00650-090205

    Article  Google Scholar 

  • Walker BH, Carpenter SR, Rockstrom J, Crépin A-S, Peterson GD (2012) Drivers, “slow” variables, “fast” variables, shocks, and resilience. Ecology Society 17(3):art30. https://doi.org/10.5751/ES-05063-170330

    Article  Google Scholar 

  • Wallace B (1953) On coadaptation in Drosophila. Am Nat 87(837):343–358. https://doi.org/10.1086/281795

    Article  Google Scholar 

  • Westley FR, Olsson P, Folke C, Homer-Dixon T, Vredenburg H, Loorbach D, Thompson J, Nilsson M, Lambin E, Sendzimir J, Banerjee B, Galaz V, van der Leeuw S (2011) Tipping toward sustainability: emerging pathways of transformation. Ambio 40(7):762–780. https://doi.org/10.1007/s13280-011-0186-9

    Article  Google Scholar 

  • Westley FR, Tjornbo O, Schultz L, Olsson P, Folke C, Crona B, Bodin Ö (2013) A theory of transformative agency in linked social-ecological systems. Ecology Society 18(3):27. https://doi.org/10.5751/ES-05072-180327

    Article  Google Scholar 

  • Williams JW, Blois JL, Shuman BN (2011) Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary: Extrinsic and intrinsic abrupt ecological change. J Ecol 99(3):664–677. https://doi.org/10.1111/j.1365-2745.2011.01810.x

    Article  Google Scholar 

  • Wolf JB, Brodie ED (1998) The coadaptation of parental and offspring characters. Evolution 52(2):299–308. https://doi.org/10.1111/j.1558-5646.1998.tb01632.x

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the US Department of Agriculture for funding this research through its McIntire-Stennis Programs (Projects 1011135 and 1021272), as well as to the US Department of Agriculture Forest Service Northern Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Sotnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handled by Suneetha Subramanian, United Nations University Center Administration, India.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sotnik, G., Fischer, A.P., Ibáñez, I. et al. A transdisciplinary typology of change identifies new categories of adaptations and forms of co-adaptation in coupled human and natural systems. Sustain Sci 16, 1609–1623 (2021). https://doi.org/10.1007/s11625-021-00979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-021-00979-y

Keywords

  • Adaptation
  • Change
  • Co-adaptation
  • Coupled human and natural system
  • Social–ecological system
  • Typology